monash_tsf / README.md
albertvillanova's picture
Reorder split names
d73a2f8
|
raw
history blame
31.2 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - found
license:
  - cc-by-4.0
multilinguality:
  - monolingual
pretty_name: Monash Time Series Forecasting Repository
size_categories:
  - 1K<n<10K
source_datasets:
  - original
task_categories:
  - time-series-forecasting
task_ids:
  - univariate-time-series-forecasting
  - multivariate-time-series-forecasting
dataset_info:
  - config_name: weather
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 176893738
        num_examples: 3010
      - name: test
        num_bytes: 177638713
        num_examples: 3010
      - name: validation
        num_bytes: 177266226
        num_examples: 3010
    download_size: 38820451
    dataset_size: 531798677
  - config_name: tourism_yearly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 54264
        num_examples: 518
      - name: test
        num_bytes: 71358
        num_examples: 518
      - name: validation
        num_bytes: 62811
        num_examples: 518
    download_size: 36749
    dataset_size: 188433
  - config_name: tourism_quarterly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 162738
        num_examples: 427
      - name: test
        num_bytes: 190920
        num_examples: 427
      - name: validation
        num_bytes: 176829
        num_examples: 427
    download_size: 93833
    dataset_size: 530487
  - config_name: tourism_monthly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 391518
        num_examples: 366
      - name: test
        num_bytes: 463986
        num_examples: 366
      - name: validation
        num_bytes: 427752
        num_examples: 366
    download_size: 199791
    dataset_size: 1283256
  - config_name: cif_2016
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 24731
        num_examples: 72
      - name: test
        num_bytes: 31859
        num_examples: 72
      - name: validation
        num_bytes: 28295
        num_examples: 72
    download_size: 53344
    dataset_size: 84885
  - config_name: london_smart_meters
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 684386194
        num_examples: 5560
      - name: test
        num_bytes: 687138394
        num_examples: 5560
      - name: validation
        num_bytes: 685762294
        num_examples: 5560
    download_size: 219673439
    dataset_size: 2057286882
  - config_name: australian_electricity_demand
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 4763162
        num_examples: 5
      - name: test
        num_bytes: 4765637
        num_examples: 5
      - name: validation
        num_bytes: 4764400
        num_examples: 5
    download_size: 5770526
    dataset_size: 14293199
  - config_name: wind_farms_minutely
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 710078918
        num_examples: 339
      - name: test
        num_bytes: 710246723
        num_examples: 339
      - name: validation
        num_bytes: 710162820
        num_examples: 339
    download_size: 71383130
    dataset_size: 2130488461
  - config_name: bitcoin
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 336511
        num_examples: 18
      - name: test
        num_bytes: 340966
        num_examples: 18
      - name: validation
        num_bytes: 338738
        num_examples: 18
    download_size: 220403
    dataset_size: 1016215
  - config_name: pedestrian_counts
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 12897120
        num_examples: 66
      - name: test
        num_bytes: 12923256
        num_examples: 66
      - name: validation
        num_bytes: 12910188
        num_examples: 66
    download_size: 4587054
    dataset_size: 38730564
  - config_name: vehicle_trips
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 105261
        num_examples: 329
      - name: test
        num_bytes: 186688
        num_examples: 329
      - name: validation
        num_bytes: 145974
        num_examples: 329
    download_size: 44914
    dataset_size: 437923
  - config_name: kdd_cup_2018
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 12040046
        num_examples: 270
      - name: test
        num_bytes: 12146966
        num_examples: 270
      - name: validation
        num_bytes: 12093506
        num_examples: 270
    download_size: 2456948
    dataset_size: 36280518
  - config_name: nn5_daily
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 314828
        num_examples: 111
      - name: test
        num_bytes: 366110
        num_examples: 111
      - name: validation
        num_bytes: 340469
        num_examples: 111
    download_size: 287708
    dataset_size: 1021407
  - config_name: nn5_weekly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 48344
        num_examples: 111
      - name: test
        num_bytes: 55670
        num_examples: 111
      - name: validation
        num_bytes: 52007
        num_examples: 111
    download_size: 62043
    dataset_size: 156021
  - config_name: kaggle_web_traffic
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 415494391
        num_examples: 145063
      - name: test
        num_bytes: 486103806
        num_examples: 145063
      - name: validation
        num_bytes: 450799098
        num_examples: 145063
    download_size: 145485324
    dataset_size: 1352397295
  - config_name: kaggle_web_traffic_weekly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 64242469
        num_examples: 145063
      - name: test
        num_bytes: 73816627
        num_examples: 145063
      - name: validation
        num_bytes: 69029548
        num_examples: 145063
    download_size: 28930900
    dataset_size: 207088644
  - config_name: solar_10_minutes
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 29640033
        num_examples: 137
      - name: test
        num_bytes: 29707848
        num_examples: 137
      - name: validation
        num_bytes: 29673941
        num_examples: 137
    download_size: 4559353
    dataset_size: 89021822
  - config_name: solar_weekly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 28614
        num_examples: 137
      - name: test
        num_bytes: 34265
        num_examples: 137
      - name: validation
        num_bytes: 31439
        num_examples: 137
    download_size: 24375
    dataset_size: 94318
  - config_name: car_parts
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 396653
        num_examples: 2674
      - name: test
        num_bytes: 661379
        num_examples: 2674
      - name: validation
        num_bytes: 529016
        num_examples: 2674
    download_size: 39656
    dataset_size: 1587048
  - config_name: fred_md
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 314514
        num_examples: 107
      - name: test
        num_bytes: 325107
        num_examples: 107
      - name: validation
        num_bytes: 319811
        num_examples: 107
    download_size: 169107
    dataset_size: 959432
  - config_name: traffic_hourly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 62071974
        num_examples: 862
      - name: test
        num_bytes: 62413326
        num_examples: 862
      - name: validation
        num_bytes: 62242650
        num_examples: 862
    download_size: 22868806
    dataset_size: 186727950
  - config_name: traffic_weekly
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 344154
        num_examples: 862
      - name: test
        num_bytes: 401046
        num_examples: 862
      - name: validation
        num_bytes: 372600
        num_examples: 862
    download_size: 245126
    dataset_size: 1117800
  - config_name: hospital
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 217625
        num_examples: 767
      - name: test
        num_bytes: 293558
        num_examples: 767
      - name: validation
        num_bytes: 255591
        num_examples: 767
    download_size: 78110
    dataset_size: 766774
  - config_name: covid_deaths
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 176352
        num_examples: 266
      - name: test
        num_bytes: 242187
        num_examples: 266
      - name: validation
        num_bytes: 209270
        num_examples: 266
    download_size: 27335
    dataset_size: 627809
  - config_name: sunspot
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 304726
        num_examples: 1
      - name: test
        num_bytes: 304974
        num_examples: 1
      - name: validation
        num_bytes: 304850
        num_examples: 1
    download_size: 68865
    dataset_size: 914550
  - config_name: saugeenday
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 97722
        num_examples: 1
      - name: test
        num_bytes: 97969
        num_examples: 1
      - name: validation
        num_bytes: 97845
        num_examples: 1
    download_size: 28721
    dataset_size: 293536
  - config_name: us_births
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 29923
        num_examples: 1
      - name: test
        num_bytes: 30171
        num_examples: 1
      - name: validation
        num_bytes: 30047
        num_examples: 1
    download_size: 16332
    dataset_size: 90141
  - config_name: solar_4_seconds
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 30513083
        num_examples: 1
      - name: test
        num_bytes: 30513578
        num_examples: 1
      - name: validation
        num_bytes: 30513331
        num_examples: 1
    download_size: 794502
    dataset_size: 91539992
  - config_name: wind_4_seconds
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 30512774
        num_examples: 1
      - name: test
        num_bytes: 30513269
        num_examples: 1
      - name: validation
        num_bytes: 30513021
        num_examples: 1
    download_size: 2226184
    dataset_size: 91539064
  - config_name: rideshare
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence:
          sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 4249051
        num_examples: 156
      - name: test
        num_bytes: 5161435
        num_examples: 156
      - name: validation
        num_bytes: 4705243
        num_examples: 156
    download_size: 1031826
    dataset_size: 14115729
  - config_name: oikolab_weather
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 3299142
        num_examples: 8
      - name: test
        num_bytes: 3302310
        num_examples: 8
      - name: validation
        num_bytes: 3300726
        num_examples: 8
    download_size: 1326101
    dataset_size: 9902178
  - config_name: temperature_rain
    features:
      - name: start
        dtype: timestamp[s]
      - name: target
        sequence:
          sequence: float32
      - name: feat_static_cat
        sequence: uint64
      - name: feat_dynamic_real
        sequence:
          sequence: float32
      - name: item_id
        dtype: string
    splits:
      - name: train
        num_bytes: 88121466
        num_examples: 422
      - name: test
        num_bytes: 96059286
        num_examples: 422
      - name: validation
        num_bytes: 92090376
        num_examples: 422
    download_size: 25747139
    dataset_size: 276271128

Dataset Card for Monash Time Series Forecasting Repository

Table of Contents

Dataset Description

Dataset Summary

The first comprehensive time series forecasting repository containing datasets of related time series to facilitate the evaluation of global forecasting models. All datasets are intended to use only for research purpose. Our repository contains 30 datasets including both publicly available time series datasets (in different formats) and datasets curated by us. Many datasets have different versions based on the frequency and the inclusion of missing values, making the total number of dataset variations to 58. Furthermore, it includes both real-world and competition time series datasets covering varied domains.

The following table shows a list of datasets available:

Name Domain No. of series Freq. Pred. Len. Source
weather Nature 3010 1D 30 Sparks et al., 2020
tourism_yearly Tourism 1311 1Y 4 Athanasopoulos et al., 2011
tourism_quarterly Tourism 1311 1Q-JAN 8 Athanasopoulos et al., 2011
tourism_monthly Tourism 1311 1M 24 Athanasopoulos et al., 2011
cif_2016 Banking 72 1M 12 Stepnicka and Burda, 2017
london_smart_meters Energy 5560 30T 60 Jean-Michel, 2019
australian_electricity_demand Energy 5 30T 60 Godahewa et al. 2021
wind_farms_minutely Energy 339 1T 60 Godahewa et al. 2021
bitcoin Economic 18 1D 30 Godahewa et al. 2021
pedestrian_counts Transport 66 1H 48 City of Melbourne, 2020
vehicle_trips Transport 329 1D 30 fivethirtyeight, 2015
kdd_cup_2018 Nature 270 1H 48 KDD Cup, 2018
nn5_daily Banking 111 1D 56 Ben Taieb et al., 2012
nn5_weekly Banking 111 1W-MON 8 Ben Taieb et al., 2012
kaggle_web_traffic Web 145063 1D 59 Google, 2017
kaggle_web_traffic_weekly Web 145063 1W-WED 8 Google, 2017
solar_10_minutes Energy 137 10T 60 Solar, 2020
solar_weekly Energy 137 1W-SUN 5 Solar, 2020
car_parts Sales 2674 1M 12 Hyndman, 2015
fred_md Economic 107 1M 12 McCracken and Ng, 2016
traffic_hourly Transport 862 1H 48 Caltrans, 2020
traffic_weekly Transport 862 1W-WED 8 Caltrans, 2020
hospital Health 767 1M 12 Hyndman, 2015
covid_deaths Health 266 1D 30 Johns Hopkins University, 2020
sunspot Nature 1 1D 30 Sunspot, 2015
saugeenday Nature 1 1D 30 McLeod and Gweon, 2013
us_births Health 1 1D 30 Pruim et al., 2020
solar_4_seconds Energy 1 4S 60 Godahewa et al. 2021
wind_4_seconds Energy 1 4S 60 Godahewa et al. 2021
rideshare Transport 2304 1H 48 Godahewa et al. 2021
oikolab_weather Nature 8 1H 48 Oikolab
temperature_rain Nature 32072 1D 30 Godahewa et al. 2021

Dataset Usage

To load a particular dataset just specify its name from the table above e.g.:

load_dataset("monash_tsf", "nn5_daily")

Notes:

  • Data might contain missing values as in the original datasets.
  • The prediction length is either specified in the dataset or a default value depending on the frequency is used as in the original repository benchmark.

Supported Tasks and Leaderboards

time-series-forecasting

univariate-time-series-forecasting

The univariate time series forecasting tasks involves learning the future one dimensional target values of a time series in a dataset for some prediction_length time steps. The performance of the forecast models can then be validated via the ground truth in the validation split and tested via the test split.

multivariate-time-series-forecasting

The multivariate time series forecasting task involves learning the future vector of target values of a time series in a dataset for some prediction_length time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the validation split and tested via the test split.

Languages

Dataset Structure

Data Instances

A sample from the training set is provided below:

{
  'start': datetime.datetime(2012, 1, 1, 0, 0),
  'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
  'feat_static_cat': [0], 
  'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
  'item_id': '0'
}

Data Fields

For the univariate regular time series each series has the following keys:

  • start: a datetime of the first entry of each time series in the dataset
  • target: an array[float32] of the actual target values
  • feat_static_cat: an array[uint64] which contains a categorical identifier of each time series in the dataset
  • feat_dynamic_real: optional array of covariate features
  • item_id: a string identifier of each time series in a dataset for reference

For the multivariate time series the target is a vector of the multivariate dimension for each time point.

Data Splits

The datasets are split in time depending on the prediction length specified in the datasets. In particular for each time series in a dataset there is a prediction length window of the future in the validation split and another prediction length more in the test split.

Dataset Creation

Curation Rationale

To facilitate the evaluation of global forecasting models. All datasets in our repository are intended for research purposes and to evaluate the performance of new forecasting algorithms.

Source Data

Initial Data Collection and Normalization

Out of the 30 datasets, 23 were already publicly available in different platforms with different data formats. The original sources of all datasets are mentioned in the datasets table above.

After extracting and curating these datasets, we analysed them individually to identify the datasets containing series with different frequencies and missing observations. Nine datasets contain time series belonging to different frequencies and the archive contains a separate dataset per each frequency.

Who are the source language producers?

The data comes from the datasets listed in the table above.

Annotations

Annotation process

The annotations come from the datasets listed in the table above.

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

Licensing Information

Creative Commons Attribution 4.0 International

Citation Information

@InProceedings{godahewa2021monash,
    author = "Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo",
    title = "Monash Time Series Forecasting Archive",
    booktitle = "Neural Information Processing Systems Track on Datasets and Benchmarks",
    year = "2021",
    note = "forthcoming"
}

Contributions

Thanks to @kashif for adding this dataset.