Datasets:
File size: 9,184 Bytes
0cdcbd3 47fa989 8777b36 bee5346 34ea69b 14416d7 f87509e 14416d7 f87509e 14416d7 f87509e 44e5b90 7df5953 44e5b90 7df5953 44e5b90 7df5953 2340a62 e02ae15 2340a62 e02ae15 47fa989 9437e2c bee5346 9437e2c bee5346 9437e2c 44e5b90 f8a023e 34ea69b 3911bca 34ea69b 3911bca 0cdcbd3 8973971 d32cb25 8973971 d32cb25 8973971 2df9c83 36c6aba b6d84cd 36c6aba 8973971 d32cb25 e9187b5 9f44375 e9187b5 8973971 2df9c83 e9187b5 2df9c83 fe37272 2df9c83 fe37272 2df9c83 fe37272 2df9c83 fe37272 8973971 2df9c83 fe37272 8973971 2df9c83 fe37272 2df9c83 fe37272 2df9c83 d32cb25 8973971 d32cb25 8973971 d32cb25 34ea69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
license: mit
dataset_info:
- config_name: default
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
splits:
- name: train
num_bytes: 366918005
num_examples: 972467
download_size: 256443222
dataset_size: 366918005
- config_name: gemini-augmented
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 11142831.6
num_examples: 9000
- name: test
num_bytes: 1238092.4
num_examples: 1000
download_size: 7541863
dataset_size: 12380924
- config_name: instruct
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 9876880
num_examples: 9000
- name: test
num_bytes: 1104403
num_examples: 1000
download_size: 6887847
dataset_size: 10981283
- config_name: instruct-augmented
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 11171774
num_examples: 9000
- name: test
num_bytes: 1209150
num_examples: 1000
download_size: 7561715
dataset_size: 12380924
- config_name: instruct-large
features:
- name: info
dtype: string
- name: modern
dtype: string
- name: classical
dtype: string
- name: english
dtype: string
- name: text
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 1072811901.9168397
num_examples: 970727
- name: test
num_bytes: 1104403
num_examples: 1000
download_size: 673287243
dataset_size: 1073916304.9168396
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: instruct
data_files:
- split: train
path: instruct/train-*
- split: test
path: instruct/test-*
- config_name: instruct-augmented
data_files:
- split: train
path: instruct-augmented/train-*
- split: test
path: instruct-augmented/test-*
- config_name: instruct-large
data_files:
- split: train
path: instruct-large/train-*
- split: test
path: instruct-large/test-*
task_categories:
- translation
- question-answering
language:
- zh
- en
- lzh
size_categories:
- 100K<n<1M
tags:
- machine-translation
---
# **Dataset Card for WenYanWen\_English\_Parallel**
## **Dataset Summary**
The WenYanWen\_English\_Parallel dataset is a multilingual parallel corpus in Classical Chinese (Wenyanwen), modern Chinese, and English. The Classical Chinese and modern Chinese parts are sourced from the NiuTrans/Classical-Modern dataset, while the corresponding English translations are generated using Gemini Pro.
## **Data Fields**
- `info`: A string representing the title or source information of the text.
- `classical`: Classical Chinese (Wenyanwen) text corresponding to the modern text.
- `modern`: A string containing the translation of the original Classical Chinese text into modern Chinese.
- `english`: English translation of the Chinese text.
- `text`: instruction/answer pair in string format
- `messages`: instruction/answer pair in conversation format:
- `content`: String representing the content of a message.
- `role`: String representing the role associated with the message (e.g., system, assistent, user).
Here is an example for a dataset entry:
| Field | Type | Description |
|------------|----------------|------------------------------------------------------------------------------------------|
| info | string | 《辽史·列传·卷二十八》 |
| modern | string | 乾统三年,徙封为秦国公。 |
| classical | string | 乾统三年,徙封秦国。 |
| english | string | In the third year of the Qingtong Era, he was re-enfeoffed as Prince of the Qin State. |
| text | string | `<s>`[INST] 将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。 [/INST] 乾统三年,徙封秦国。`</s>` |
| messages | list | [{"content": "将以下现代汉语文本改写为文言文: 乾统三年,徙封为秦国公。", "role": "user"}, {"content": "乾统三年,徙封秦国。", "role": "assistant"}] |
## **Dataset Structure**
The dataset consists of four subsets: `default`, `instruct`, `instruct-augment`, and `instruct-large`.
- `default` is a parallel translation dataset.
- `instruct` serves as an instruction-tuning dataset and consists of prompt/answer pairs created from a 10,000-sample subset of the `default` dataset.
- `instruct-augment` is similar to `instruct`, with the distinction being that the prompt/answer pairs have been augmented by Gemini-Pro. (Detailed information can be found in our dataset generation code on [Github](https://github.com/Kaifeng-Gao/WenYanWen_English_Parallel/tree/main))
- `instruct-large` is an expanded version of `instruct` that includes all samples from the `default` dataset.
### **Default**
| `info` | `modern` | `classical` | `english` |
|----------|-------------|-----------|-----------|
| string | string | string | string |
| Split | Examples |
|-------|-----------|
| Train | 972,467 |
### **Instruct**
| `info` | `modern` | `classical` | `english` | `text` | `messages` |
|----------|----------|-------------|-----------|--------|------------------------|
| string | string | string | string | string | list of {`content`: string, `role`: string}|
| Split | Examples |
|-------|-----------|
| Train | 9,000 |
| Test | 1,000 |
### **Instruct-Augmented**
| `info` | `modern` | `classical` | `english` | `text` | `messages` |
|----------|----------|-------------|-----------|--------|------------------------|
| string | string | string | string | string | list of {`content`: string, `role`: string}|
| Split | Examples |
|-------|-----------|
| Train | 9,000 |
| Test | 1,000 |
### **Instruct-Large**
| `info` | `modern` | `classical` | `english` | `text` | `messages` |
|----------|----------|-------------|-----------|--------|------------------------|
| string | string | string | string | string | list of {`content`: string, `role`: string}|
| Split | Examples |
|-------|-----------|
| Train | 875,214 |
| Test | 97,246 |
## **Supported Tasks and Leaderboard**
This dataset can be used for various multilingual and translation tasks, including but not limited to:
1. Neural Machine Translation (Classical Chinese to Modern Chinese)
2. Neural Machine Translation (Modern Chinese to English)
3. Neural Machine Translation (Classical Chinese to English)
4. Multilingual Text-to-Text Transfer
There is currently no official leaderboard for this dataset.
## **License**
Please refer to the license of the [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern) dataset and the terms of use of Gemini Pro for more information regarding the dataset license.
## **Citation Information**
If you use this dataset in your research, please cite the original sources:
1. [NiuTrans/Classical-Modern](https://github.com/NiuTrans/Classical-Modern)
2. [Gemini Pro](https://arxiv.org/abs/2403.05530)
## **Potential Bias**
Since the English translations are generated using Gemini Pro, there might be inconsistencies or errors in the translations, which may introduce bias into the dataset. Additionally, the choice of Classical Chinese texts and their modern Chinese translations may also introduce bias. Finally, the use of a single translation tool for the English translations may result in limited linguistic diversity.
## **Potential Social Impact**
This dataset can be used for various multilingual and translation tasks, which can have a positive impact on facilitating cross-cultural communication and understanding. However, it is important to be aware of the potential biases in the dataset and to use the dataset responsibly. Additionally, as with any dataset, it is important to consider the ethical implications of using this dataset, including issues related to data privacy, consent, and representation. |