add loading script
Browse files- Caltech-101.py +207 -0
Caltech-101.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import ImageClassification
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{FeiFei2004LearningGV,
|
27 |
+
title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
|
28 |
+
author={Li Fei-Fei and Rob Fergus and Pietro Perona},
|
29 |
+
journal={Computer Vision and Pattern Recognition Workshop},
|
30 |
+
year={2004},
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
Pictures of objects belonging to 101 categories.
|
36 |
+
About 40 to 800 images per category.
|
37 |
+
Most categories have about 50 images.
|
38 |
+
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato.
|
39 |
+
The size of each image is roughly 300 x 200 pixels.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://data.caltech.edu/records/20086"
|
43 |
+
|
44 |
+
_LICENSE = "CC BY 4.0"
|
45 |
+
|
46 |
+
_DATA_URL = "brand_new_data/caltech-101.zip"
|
47 |
+
# _DATA_URL = "brand_new_data/caltech-101/101_ObjectCategories.tar.gz"
|
48 |
+
|
49 |
+
_NAMES = [
|
50 |
+
"accordion",
|
51 |
+
"airplanes",
|
52 |
+
"anchor",
|
53 |
+
"ant",
|
54 |
+
"background_google",
|
55 |
+
"barrel",
|
56 |
+
"bass",
|
57 |
+
"beaver",
|
58 |
+
"binocular",
|
59 |
+
"bonsai",
|
60 |
+
"brain",
|
61 |
+
"brontosaurus",
|
62 |
+
"buddha",
|
63 |
+
"butterfly",
|
64 |
+
"camera",
|
65 |
+
"cannon",
|
66 |
+
"car_side",
|
67 |
+
"ceiling_fan",
|
68 |
+
"cellphone",
|
69 |
+
"chair",
|
70 |
+
"chandelier",
|
71 |
+
"cougar_body",
|
72 |
+
"cougar_face",
|
73 |
+
"crab",
|
74 |
+
"crayfish",
|
75 |
+
"crocodile",
|
76 |
+
"crocodile_head",
|
77 |
+
"cup",
|
78 |
+
"dalmatian",
|
79 |
+
"dollar_bill",
|
80 |
+
"dolphin",
|
81 |
+
"dragonfly",
|
82 |
+
"electric_guitar",
|
83 |
+
"elephant",
|
84 |
+
"emu",
|
85 |
+
"euphonium",
|
86 |
+
"ewer",
|
87 |
+
"faces",
|
88 |
+
"faces_easy",
|
89 |
+
"ferry",
|
90 |
+
"flamingo",
|
91 |
+
"flamingo_head",
|
92 |
+
"garfield",
|
93 |
+
"gerenuk",
|
94 |
+
"gramophone",
|
95 |
+
"grand_piano",
|
96 |
+
"hawksbill",
|
97 |
+
"headphone",
|
98 |
+
"hedgehog",
|
99 |
+
"helicopter",
|
100 |
+
"ibis",
|
101 |
+
"inline_skate",
|
102 |
+
"joshua_tree",
|
103 |
+
"kangaroo",
|
104 |
+
"ketch",
|
105 |
+
"lamp",
|
106 |
+
"laptop",
|
107 |
+
"leopards",
|
108 |
+
"llama",
|
109 |
+
"lobster",
|
110 |
+
"lotus",
|
111 |
+
"mandolin",
|
112 |
+
"mayfly",
|
113 |
+
"menorah",
|
114 |
+
"metronome",
|
115 |
+
"minaret",
|
116 |
+
"motorbikes",
|
117 |
+
"nautilus",
|
118 |
+
"octopus",
|
119 |
+
"okapi",
|
120 |
+
"pagoda",
|
121 |
+
"panda",
|
122 |
+
"pigeon",
|
123 |
+
"pizza",
|
124 |
+
"platypus",
|
125 |
+
"pyramid",
|
126 |
+
"revolver",
|
127 |
+
"rhino",
|
128 |
+
"rooster",
|
129 |
+
"saxophone",
|
130 |
+
"schooner",
|
131 |
+
"scissors",
|
132 |
+
"scorpion",
|
133 |
+
"sea_horse",
|
134 |
+
"snoopy",
|
135 |
+
"soccer_ball",
|
136 |
+
"stapler",
|
137 |
+
"starfish",
|
138 |
+
"stegosaurus",
|
139 |
+
"stop_sign",
|
140 |
+
"strawberry",
|
141 |
+
"sunflower",
|
142 |
+
"tick",
|
143 |
+
"trilobite",
|
144 |
+
"umbrella",
|
145 |
+
"watch",
|
146 |
+
"water_lilly",
|
147 |
+
"wheelchair",
|
148 |
+
"wild_cat",
|
149 |
+
"windsor_chair",
|
150 |
+
"wrench",
|
151 |
+
"yin_yang",
|
152 |
+
]
|
153 |
+
|
154 |
+
_TRAIN_POINTS_PER_CLASS = 30
|
155 |
+
|
156 |
+
|
157 |
+
class Caltech101(datasets.GeneratorBasedBuilder):
|
158 |
+
"""Caltech 101 dataset."""
|
159 |
+
|
160 |
+
VERSION = datasets.Version("1.0.0")
|
161 |
+
|
162 |
+
def _info(self):
|
163 |
+
return datasets.DatasetInfo(
|
164 |
+
description=_DESCRIPTION,
|
165 |
+
features=datasets.Features(
|
166 |
+
{
|
167 |
+
"img": datasets.Image(),
|
168 |
+
"label": datasets.features.ClassLabel(names=_NAMES),
|
169 |
+
}
|
170 |
+
),
|
171 |
+
supervised_keys=("img", "label"),
|
172 |
+
homepage=_HOMEPAGE,
|
173 |
+
license=_LICENSE,
|
174 |
+
citation=_CITATION,
|
175 |
+
task_templates=ImageClassification(
|
176 |
+
image_column="img", label_column="label"
|
177 |
+
),
|
178 |
+
)
|
179 |
+
|
180 |
+
def _split_generators(self, dl_manager):
|
181 |
+
# ----- Work in progress here -----
|
182 |
+
data_dir = dl_manager.download_and_extract(_DATA_URL)
|
183 |
+
files = dl_manager.iter_files(data_dir)
|
184 |
+
# ---------------------------------
|
185 |
+
return [
|
186 |
+
datasets.SplitGenerator(
|
187 |
+
name=datasets.Split.TRAIN,
|
188 |
+
# These kwargs will be passed to _generate_examples
|
189 |
+
gen_kwargs={
|
190 |
+
"filepath": data_dir, # TODO: change accordingly
|
191 |
+
"split": "train",
|
192 |
+
},
|
193 |
+
),
|
194 |
+
datasets.SplitGenerator(
|
195 |
+
name=datasets.Split.TEST,
|
196 |
+
# These kwargs will be passed to _generate_examples
|
197 |
+
gen_kwargs={
|
198 |
+
"filepath": data_dir, # TODO: change accordingly
|
199 |
+
"split": "test",
|
200 |
+
},
|
201 |
+
),
|
202 |
+
]
|
203 |
+
|
204 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
205 |
+
def _generate_examples(self, filepath, split):
|
206 |
+
# TODO
|
207 |
+
pass
|