Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Persian
Size:
1K<n<10K
License:
File size: 4,774 Bytes
817f06e 70eee97 817f06e 70eee97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- fa
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# Dataset Card for [Persian NER]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/HaniehP/PersianNER)
- **Repository:** [Github](https://github.com/HaniehP/PersianNER)
- **Paper:** [Aclweb](https://www.aclweb.org/anthology/C16-1319)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The dataset includes 7,682 Persian sentences, split into 250,015 tokens and their NER labels. It is available in 3 folds to be used in turn as training and test sets. The NER tags are in IOB format.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
The NER tags correspond to this list:
```
"O", "I-event", "I-fac", "I-loc", "I-org", "I-pers", "I-pro", "B-event", "B-fac", "B-loc", "B-org", "B-pers", "B-pro"
```
### Data Splits
Training and test splits
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Hanieh Poostchi, Ehsan Zare Borzeshi, Mohammad Abdous, Massimo Piccardi
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
Hanieh Poostchi, Ehsan Zare Borzeshi, Mohammad Abdous, Massimo Piccardi
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
Dataset is published for academic use only
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution 4.0 International License.
### Citation Information
@inproceedings{poostchi-etal-2016-personer,
title = "{P}erso{NER}: {P}ersian Named-Entity Recognition",
author = "Poostchi, Hanieh and
Zare Borzeshi, Ehsan and
Abdous, Mohammad and
Piccardi, Massimo",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://www.aclweb.org/anthology/C16-1319",
pages = "3381--3389",
abstract = "Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network.",
}
### Contributions
Thanks to [@KMFODA](https://github.com/KMFODA) for adding this dataset. |