system HF staff commited on
Commit
70eee97
1 Parent(s): 817f06e

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

Files changed (1) hide show
  1. README.md +5 -0
README.md CHANGED
@@ -43,6 +43,7 @@ task_ids:
43
  - [Dataset Curators](#dataset-curators)
44
  - [Licensing Information](#licensing-information)
45
  - [Citation Information](#citation-information)
 
46
 
47
  ## Dataset Description
48
 
@@ -157,3 +158,7 @@ Creative Commons Attribution 4.0 International License.
157
  pages = "3381--3389",
158
  abstract = "Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network.",
159
  }
 
 
 
 
 
43
  - [Dataset Curators](#dataset-curators)
44
  - [Licensing Information](#licensing-information)
45
  - [Citation Information](#citation-information)
46
+ - [Contributions](#contributions)
47
 
48
  ## Dataset Description
49
 
 
158
  pages = "3381--3389",
159
  abstract = "Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network.",
160
  }
161
+
162
+ ### Contributions
163
+
164
+ Thanks to [@KMFODA](https://github.com/KMFODA) for adding this dataset.