Datasets:

Modalities:
Tabular
Text
Languages:
Chinese
ArXiv:
Libraries:
Datasets
License:
Hansel / README.md
imryanxu's picture
paperswithcode
3377ce4
|
raw
history blame
2.38 kB
metadata
annotations_creators:
  - crowdsourced
  - found
configs:
  - aidayago2
  - cweb
  - eli5
  - fever
  - hotpotqa
  - nq
  - structured_zeroshot
  - trex
  - triviaqa_support_only
  - wned
  - wow
language:
  - zh
language_creators:
  - found
  - crowdsourced
license:
  - cc-by-sa-4.0
multilinguality:
  - monolingual
paperswithcode_id: Hansel
pretty_name: Hansel
size_categories:
  - 1M<n<10M
  - 1K<n<10K
source_datasets:
  - original
tags: []
task_categories:
  - text-retrieval
task_ids:
  - entity-linking-retrieval

Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark

Overview

Hansel is a high-quality human-annotated Chinese entity linking (EL) dataset, focusing on tail entities and emerging entities:

  • The test set contains Few-shot (FS) and zero-shot (ZS) slices, has 10K examples and uses Wikidata as the corresponding knowledge base.
  • The training and validation sets are from Wikipedia hyperlinks, useful for large-scale pretraining of Chinese EL systems.

Please see our WSDM 2023 paper Hansel to learn more about our dataset.

Dataset

Data Statistics

# Mentions # Entities Domain
Train 9,879,813 541,058 Wikipedia
Validation 9,674 6,320 Wikipedia
Hansel-FS 5,260 2,720 News, Social Media
Hansel-ZS 4,715 4,046 News, Social Media, E-books, etc.

Data Format

{"id": "hansel-eval-zs-1463", 
 "text": "1905电影网讯 已经筹备了十余年的吉尔莫·德尔·托罗的《匹诺曹》,在上个月顺利被网飞公司买下,成为了流媒体巨头旗下的新片。近日,这部备受关注的影片确定了自己的档期:2021年。虽然具体时间未定,但影片却已经实实在在地向前迈出了一步。", 
 "start": 29, 
 "end": 32, 
 "mention": "匹诺曹", 
 "gold_id": "Q73895818", 
 "source": "https://www.1905.com/news/20181107/1325389.shtml", 
 "domain": "news"
}

Citation

If you use our dataset in your work, please cite us.

@misc{xu2022hansel,
  title = {Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark},
  author = {Xu, Zhenran and Shan, Zifei and Li, Yuxin and Hu, Baotian and Qin, Bing},
  publisher = {arXiv},
  year = {2022},
  url = {https://arxiv.org/abs/2207.13005}
}