Datasets:

Modalities:
Image
ArXiv:
Libraries:
Datasets
License:
Search is not available for this dataset
image
imagewidth (px)
512
512
label
class label
11 classes
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

CatMask-HQ

[ArXiv] MaTe3D: Mask-guided Text-based 3D-aware Portrait Editing

Kangneng Zhou, Daiheng Gao, Xuan Wang, Jie Zhang, Peng Zhang, Xusen Sun, Longhao Zhang, Shiqi Yang, Bang Zhang, Liefeng Bo, Yaxing Wang, Yaxing Wang, Ming-Ming Cheng

To expand the scope beyond human face and explore the model generalization and expansion, we design the CatMask-HQ dataset with the following representative features:

Specialization: CatMask-HQ is specifically designed for cat faces, including precise annotations for six facial parts (background, skin, ears, eyes, nose, and mouth) relevant to feline features.

High-Quality Annotations: The dataset benefits from manual annotations by 50 annotators and undergoes 3 accuracy checks, ensuring high-quality labels and reducing individual differences.

Substantial Dataset Scale: With approximately 5,060 high-quality real cat face images and corresponding annotations, CatMask-HQ provides ample training database for deep learning models.

Available sources

Please see Files and versions

Contact

[email protected]

Citation

If you find this project helpful to your research, please consider citing:

@article{zhou2023mate3d,
  title     = {MaTe3D: Mask-guided Text-based 3D-aware Portrait Editing},
  author    = {Kangneng Zhou, Daiheng Gao, Xuan Wang, Jie Zhang, Peng Zhang, Xusen Sun, Longhao Zhang, Shiqi Yang, Bang Zhang, Liefeng Bo, Yaxing Wang, Ming-Ming Cheng},
  journal   = {arXiv preprint arXiv:2312.06947},
  website   = {https://montaellis.github.io/mate-3d/},
  year      = {2023}}

Downloads last month
40