instance
int64
11
4.17k
Length
float64
0.08
0.78
Diameter
float64
0.06
0.62
Height
float64
0.01
0.52
Whole_weight
float64
0
2.55
Shucked_weight
float64
0
1.19
Viscera_weight
float64
0
0.64
Shell_weight
float64
0
1.01
Sex_F
int64
0
1
Sex_I
int64
0
1
Sex_M
int64
0
1
real
int64
1
26
prediction
float64
2.67
27
model
stringclasses
5 values
cpu_training_time
int64
9M
27.1B
cpu_prediction_time
int64
966k
167M
memory_usage
int64
2.31k
71.4M
max_depth
int64
3
11
learning_rate
float64
-1
0.1
n_estimators
int64
1
1k
11
0.43
0.35
0.11
0.406
0.1675
0.081
0.135
0
0
1
10
9.566029
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
14
0.47
0.355
0.1
0.4755
0.1675
0.0805
0.185
1
0
0
10
9.978592
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
18
0.365
0.295
0.08
0.2555
0.097
0.043
0.1
0
0
1
7
9.110844
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
19
0.45
0.32
0.1
0.381
0.1705
0.075
0.115
0
0
1
9
9.482685
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
23
0.55
0.415
0.135
0.7635
0.318
0.21
0.2
1
0
0
9
9.942024
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
29
0.575
0.425
0.14
0.8635
0.393
0.227
0.2
0
0
1
11
9.919127
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
36
0.54
0.475
0.155
1.217
0.5305
0.3075
0.34
1
0
0
16
10.493841
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
39
0.355
0.29
0.09
0.3275
0.134
0.086
0.09
0
0
1
9
8.968534
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
41
0.55
0.425
0.135
0.8515
0.362
0.196
0.27
1
0
0
14
10.875035
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
45
0.39
0.295
0.095
0.203
0.0875
0.045
0.075
0
1
0
7
8.222986
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
52
0.485
0.36
0.13
0.5415
0.2595
0.096
0.16
0
0
1
10
9.784402
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
55
0.5
0.4
0.14
0.6615
0.2565
0.1755
0.22
1
0
0
8
10.62645
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
64
0.52
0.4
0.12
0.58
0.234
0.1315
0.185
0
0
1
8
9.961788
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
76
0.595
0.475
0.14
0.944
0.3625
0.189
0.315
0
0
1
9
11.496401
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
77
0.6
0.47
0.15
0.922
0.363
0.194
0.305
1
0
0
10
11.15231
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
82
0.52
0.425
0.165
0.9885
0.396
0.225
0.32
1
0
0
16
11.656438
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
87
0.56
0.44
0.16
0.8645
0.3305
0.2075
0.26
0
0
1
10
10.875035
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
88
0.46
0.355
0.13
0.517
0.2205
0.114
0.165
1
0
0
9
9.887986
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
102
0.53
0.435
0.16
0.883
0.316
0.164
0.335
0
0
1
15
11.774385
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
104
0.605
0.47
0.16
1.1735
0.4975
0.2405
0.345
0
0
1
12
10.514009
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
112
0.435
0.32
0.08
0.3325
0.1485
0.0635
0.105
0
1
0
9
8.299627
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
113
0.425
0.35
0.105
0.393
0.13
0.063
0.165
0
0
1
9
9.887986
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
122
0.515
0.425
0.14
0.766
0.304
0.1725
0.255
1
0
0
14
10.888725
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
133
0.35
0.26
0.095
0.211
0.086
0.056
0.068
0
1
0
7
8.222986
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
136
0.305
0.23
0.08
0.156
0.0675
0.0345
0.048
1
0
0
7
8.05049
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
142
0.65
0.52
0.19
1.3445
0.519
0.306
0.4465
0
0
1
16
11.913371
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
143
0.56
0.455
0.155
0.797
0.34
0.19
0.2425
0
0
1
11
10.481428
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
160
0.605
0.465
0.165
1.056
0.4215
0.2475
0.34
0
0
1
13
11.051547
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
163
0.725
0.56
0.21
2.141
0.65
0.398
1.005
1
0
0
18
12.38953
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
171
0.53
0.395
0.145
0.775
0.308
0.169
0.255
1
0
0
7
10.859866
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
174
0.235
0.16
0.04
0.048
0.0185
0.018
0.015
0
1
0
5
6.762648
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
177
0.315
0.245
0.085
0.1435
0.053
0.0475
0.05
0
1
0
8
7.908025
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
193
0.355
0.275
0.085
0.22
0.092
0.06
0.15
0
1
0
8
8.87137
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
198
0.56
0.45
0.16
0.922
0.432
0.178
0.26
0
0
1
15
10.369246
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
208
0.525
0.415
0.17
0.8325
0.2755
0.1685
0.31
1
0
0
13
11.581014
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
229
0.53
0.415
0.16
0.783
0.2935
0.158
0.245
1
0
0
15
10.628235
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
230
0.555
0.445
0.135
0.836
0.336
0.1625
0.275
0
0
1
13
10.875035
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
234
0.44
0.35
0.135
0.435
0.1815
0.083
0.125
0
1
0
12
8.937349
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
236
0.075
0.055
0.01
0.002
0.001
0.0005
0.0015
0
1
0
1
6.698105
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
245
0.35
0.26
0.085
0.174
0.0705
0.0345
0.06
0
1
0
10
8.158091
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
256
0.56
0.45
0.185
1.07
0.3805
0.175
0.41
0
0
1
19
12.796808
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
259
0.59
0.475
0.16
1.1015
0.4775
0.2555
0.295
1
0
0
13
10.290013
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
275
0.655
0.54
0.215
1.844
0.7425
0.327
0.585
0
0
1
22
12.355755
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
279
0.515
0.425
0.135
0.712
0.2665
0.1605
0.25
1
0
0
11
11.274063
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
284
0.515
0.38
0.175
0.9565
0.325
0.158
0.31
0
0
1
14
11.15231
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
294
0.6
0.495
0.195
1.0575
0.384
0.19
0.375
0
0
1
26
12.561763
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
300
0.405
0.305
0.095
0.3485
0.1455
0.0895
0.1
1
0
0
9
9.110844
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
301
0.54
0.435
0.175
0.892
0.322
0.174
0.335
1
0
0
13
11.656438
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
303
0.36
0.27
0.1
0.217
0.0885
0.0495
0.0715
0
0
1
6
8.968534
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
305
0.2
0.145
0.06
0.037
0.0125
0.0095
0.011
0
1
0
4
6.698105
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
307
0.645
0.515
0.24
1.5415
0.471
0.369
0.535
0
0
1
13
13.492581
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
308
0.55
0.41
0.125
0.7605
0.2505
0.1635
0.195
0
0
1
14
10.62645
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
319
0.33
0.255
0.095
0.172
0.066
0.0255
0.06
0
1
0
6
8.158091
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
321
0.19
0.145
0.04
0.038
0.0165
0.0065
0.015
0
1
0
4
6.719865
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
329
0.36
0.28
0.09
0.2255
0.0885
0.04
0.09
0
1
0
8
8.222986
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
330
0.5
0.38
0.155
0.5955
0.2135
0.161
0.2
0
0
1
12
10.672597
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
334
0.74
0.6
0.195
1.974
0.598
0.4085
0.71
1
0
0
16
12.709539
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
338
0.62
0.475
0.185
1.325
0.6045
0.325
0.33
0
0
1
13
10.493841
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
342
0.62
0.465
0.185
1.274
0.579
0.3065
0.32
0
0
1
12
10.493841
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
351
0.585
0.45
0.17
0.8685
0.3325
0.1635
0.27
1
0
0
22
10.875035
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
354
0.635
0.515
0.17
1.275
0.509
0.286
0.34
0
0
1
16
10.493841
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
357
0.645
0.525
0.19
1.8085
0.7035
0.3885
0.395
1
0
0
18
10.861433
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
361
0.59
0.465
0.15
0.997
0.392
0.246
0.34
1
0
0
12
11.656438
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
363
0.6
0.48
0.15
1.029
0.4085
0.2705
0.295
1
0
0
16
10.6552
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
365
0.63
0.515
0.16
1.016
0.4215
0.244
0.355
0
0
1
19
11.106463
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
370
0.65
0.545
0.165
1.566
0.6645
0.3455
0.415
1
0
0
16
10.973206
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
373
0.7
0.575
0.17
1.31
0.5095
0.314
0.42
1
0
0
14
11.50098
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
375
0.675
0.545
0.195
1.7345
0.6845
0.3695
0.605
1
0
0
20
11.868217
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
378
0.565
0.465
0.175
0.995
0.3895
0.183
0.37
0
0
1
15
11.982457
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
382
0.485
0.4
0.135
0.663
0.313
0.137
0.2
0
0
1
10
10.059972
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
390
0.415
0.325
0.1
0.3215
0.1535
0.0595
0.105
0
1
0
10
8.350406
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
391
0.475
0.375
0.125
0.593
0.277
0.115
0.18
0
0
1
10
9.720616
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
392
0.47
0.375
0.125
0.5615
0.252
0.137
0.18
1
0
0
10
9.915641
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
395
0.39
0.31
0.1
0.302
0.116
0.064
0.115
0
1
0
11
8.808225
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
396
0.5
0.395
0.14
0.7155
0.3165
0.176
0.24
1
0
0
10
10.481428
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
399
0.585
0.455
0.15
0.987
0.4355
0.2075
0.31
0
0
1
11
10.582765
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
410
0.59
0.5
0.165
1.1045
0.4565
0.2425
0.34
0
0
1
15
10.524909
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
411
0.585
0.475
0.12
0.945
0.41
0.2115
0.28
0
0
1
14
10.369246
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
414
0.605
0.495
0.17
1.2385
0.528
0.2465
0.39
1
0
0
14
11.246863
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
418
0.63
0.5
0.155
1.005
0.367
0.199
0.36
1
0
0
16
11.982457
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
421
0.49
0.38
0.12
0.529
0.2165
0.139
0.155
0
1
0
11
9.008563
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
431
0.6
0.47
0.155
1.036
0.4375
0.196
0.325
0
0
1
20
10.879153
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
434
0.44
0.345
0.1
0.366
0.122
0.0905
0.12
0
1
0
13
8.850935
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
439
0.5
0.415
0.165
0.6885
0.249
0.138
0.25
0
0
1
13
11.29022
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
440
0.36
0.275
0.11
0.2335
0.095
0.0525
0.085
0
1
0
10
8.360179
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
456
0.64
0.54
0.175
1.221
0.51
0.259
0.39
1
0
0
15
11.246863
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
457
0.36
0.28
0.105
0.199
0.0695
0.045
0.08
0
1
0
9
8.360179
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
458
0.415
0.31
0.11
0.2965
0.123
0.057
0.0995
0
1
0
10
8.43682
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
509
0.56
0.445
0.155
0.8735
0.3005
0.209
0.275
0
1
0
16
10.992983
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
512
0.49
0.38
0.145
0.6725
0.249
0.181
0.21
1
0
0
10
10.642607
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
514
0.275
0.195
0.07
0.08
0.031
0.0215
0.025
1
0
0
5
7.568979
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
518
0.325
0.23
0.09
0.147
0.06
0.034
0.045
0
0
1
4
8.05049
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
521
0.36
0.27
0.09
0.1885
0.0845
0.0385
0.055
1
0
0
5
8.834942
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
531
0.46
0.355
0.13
0.458
0.192
0.1055
0.13
1
0
0
13
9.566029
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
536
0.52
0.405
0.14
0.5775
0.2
0.145
0.179
0
1
0
11
9.767941
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
542
0.42
0.325
0.115
0.2885
0.1
0.057
0.1135
0
0
1
15
9.523318
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
546
0.255
0.195
0.065
0.08
0.0315
0.018
0.027
0
0
1
8
7.170015
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
560
0.44
0.34
0.105
0.364
0.148
0.0805
0.1175
1
0
0
8
9.523318
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
565
0.35
0.255
0.065
0.179
0.0705
0.0385
0.06
0
0
1
10
8.834942
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100
567
0.435
0.33
0.125
0.406
0.1685
0.1055
0.096
0
1
0
12
8.43682
XGBRegressor
1,093,738,000
3,000,800
121,193
3
0.01
100

Assessors For Regression: Loss Analysis - Instance Level Results

AFRLA - Instance Level Results is a collection of predictions at the instance/example level for eleven different regression tasks tested on 255 tree-based models (also called "base systems"). The aim of this dataset is to provide example-level results to train assessor models to predict performance of the tree-based models.

The dataset

The dataset presents eleven sections (one per regression task), with varying degrees of performance, difficulty and characteristics from the original tasks. Every one of the 255 models was trained on a subset of the dataset used for every task, and the results shown here are the test (never-before-seen by the models) predictions. Each subset has:

  • An instance identifier indicating the instance nº from the test set. This is just an identifier and it is not usually employed for training assessors, although in some occasions it may be useful for other analysis.

  • The original task features, the features used by the models to learn the task. Along with the instance identifier, they fully describe a test example.

  • The model features, descriptors of the 255 models. Mainly:

    • The model used (XGBoost, Random Forest, Decision Tree...)
    • Hyperparameters such as the maximum depth, number of estimators if applicable...
    • Profiling metrics such as training time, inference time or memory usage

    These metrics are not recorded per example, but rather per model (that is, if the inference time is 1.2 ms, the model predicted the entirety of the test dataset in that time, instead of just that example), and are then casted for each example. As such, they fully describre a model.

Boo

Partitions and versions

The sections are already partitioned into a predefined train-validation-test split for training assessors. Assessors need a particular kind of partitioning (mainly stratified by instance identifier to avoid contamination), so that's why the subsets are given.

The main branch contains the unaltered datasets, keeping the original values of the task and model characteristics, whereas the normalised branch contains the datasets properly normalised (numerical features are centered and scaled and categorical features are transformed into dummies).

Original tasks

Dataset #Feat. #Inst (test). Cat. Num. Domain
Abalone 8 4177 Yes Yes Biology
Auction Verification 8 2043 Yes Yes Commerce
BNG EchoMonts 10 17496 Yes Yes Health
California Housing 8 20640 Yes Yes Real State
Infrared Thermography Temperature 33 1020 Yes Yes Health
Intrusion detection 4 182 No Yes Computer Science
Life Expectancy 21 2938 Yes Yes Health
Music Popularity 14 43597 Yes Yes Music
Parkinsons Telemonitoring (motor) 20 5875 No Yes Health
Parkinsons Telemonitoring (total) 20 5875 No Yes Health
Software Cost Estimation 6 145 Yes Yes Projects
Downloads last month
326