zeroth-korean / README.md
Bingsu's picture
Update README.md
bd173fe
|
raw
history blame
2.9 kB
metadata
language:
  - ko
language_creators:
  - crowdsourced
license:
  - cc-by-4.0
multilinguality:
  - monolingual
pretty_name: zeroth-korean
source_datasets:
  - extended|kresnik/zeroth_korean
size_categories:
  - 10K<n<100K
task_categories:
  - automatic-speech-recognition

Zeroth-Korean

Dataset Description

  • Homepage: OpenSLR
  • Repository: goodatlas/zeroth
  • Download Size 2.68 GiB
  • Generated Size 2.85 GiB
  • Total Size 5.52 GiB

Zeroth-Korean

The data set contains transcriebed audio data for Korean. There are 51.6 hours transcribed Korean audio for training data (22,263 utterances, 105 people, 3000 sentences) and 1.2 hours transcribed Korean audio for testing data (457 utterances, 10 people). This corpus also contains pre-trained/designed language model, lexicon and morpheme-based segmenter(morfessor). Zeroth project introduces free Korean speech corpus and aims to make Korean speech recognition more broadly accessible to everyone. This project was developed in collaboration between Lucas Jo(@Atlas Guide Inc.) and Wonkyum Lee(@Gridspace Inc.).

Contact: Lucas Jo([email protected]), Wonkyum Lee([email protected])

License

CC BY 4.0

Dataset Structure

Data Instance

>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/zeroth-korean")
>>> dataset
DatasetDict({
    train: Dataset({
        features: ['audio', 'text'],
        num_rows: 22263
    })
    test: Dataset({
        features: ['text', 'audio'],
        num_rows: 457
    })
})

Data Size

download: 2.68 GiB
generated: 2.85 GiB
total: 5.52 GiB

Data Fields

  • audio: audio, sampling rate = 16000
    • A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
    • Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].
  • text: string
>>> dataset["train"][0]
{'audio': {'path': None,
  'array': array([-3.0517578e-05,  0.0000000e+00, -3.0517578e-05, ...,
          0.0000000e+00,  0.0000000e+00, -6.1035156e-05], dtype=float32),
  'sampling_rate': 16000},
 'text': '์ธ์‚ฌ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋‹น ์ง€๋„๋ถ€๊ฐ€ ์šฐ ์›๋‚ด๋Œ€ํ‘œ ๋ฐ ์›๋‚ด์ง€๋„๋ถ€์™€ ์ถฉ๋ถ„ํ•œ ์ƒ์˜๋ฅผ ๊ฑฐ์น˜์ง€ ์•Š์€ ์ฑ„ ์ผ๋ฐฉ์ ์œผ๋กœ ์ธ์‚ฌ๋ฅผ ํ–ˆ๋‹ค๋Š” ๋ถˆ๋งŒ๋„ ์›๋‚ด์ง€๋„๋ถ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ˜๋Ÿฌ๋‚˜์™”๋‹ค'}

Data Splits

train test
# of data 22263 457