Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
File size: 17,795 Bytes
2dab594 6cd79ca 7d8d1f2 6cd79ca 689f1ef 12ac3ef f2eea07 7346f96 6cd79ca 689f1ef 6cd79ca 689f1ef 6cd79ca 7346f96 6cd79ca 6d09ed4 12ac3ef 7346f96 6cd79ca 7346f96 6cd79ca 7346f96 6cd79ca 7346f96 6cd79ca cbfa5b7 6cd79ca 7346f96 6cd79ca 7346f96 6cd79ca 7346f96 6cd79ca cbfa5b7 6cd79ca 7346f96 6cd79ca 7346f96 6cd79ca 8ef56df 6cd79ca 2dab594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
---
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license:
- other
multilinguality:
- monolingual
paperswithcode_id: acronym-identification
pretty_name: >-
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction
and Classification in Scientific Papers
size_categories:
- 1K<n<10K
source_datasets: []
tags:
- Relation Classification
- Relation extraction
- Scientific papers
- Research papers
task_categories:
- text-classification
task_ids:
- entity-linking-classification
train-eval-index:
- col_mapping:
labels: tags
tokens: tokens
config: default
splits:
eval_split: test
task: text-classification
task_id: entity_extraction
---
# Dataset Card for SemEval2018Task7
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://lipn.univ-paris13.fr/~gabor/semeval2018task7/](https://lipn.univ-paris13.fr/~gabor/semeval2018task7/)
- **Repository:** [https://github.com/gkata/SemEval2018Task7/tree/testing](https://github.com/gkata/SemEval2018Task7/tree/testing)
- **Paper:** [SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers](https://aclanthology.org/S18-1111/)
- **Leaderboard:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
- **Size of downloaded dataset files:** 1.93 MB
### Dataset Summary
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
The three subtasks are:
- Subtask 1.1: Relation classification on clean data
- In the training data, semantic relations are manually annotated between entities.
- In the test data, only entity annotations and unlabeled relation instances are given.
- Given a scientific publication, The task is to predict the semantic relation between the entities.
- Subtask 1.2: Relation classification on noisy data
- Entity occurrences are automatically annotated in both the training and the test data.
- The task is to predict the semantic
relation between the entities.
- Subtask 2: Metrics for the extraction and classification scenario
- Evaluation of relation extraction
- Evaluation of relation classification
The Relations types are USAGE, RESULT, MODEL, PART_WHOLE, TOPIC, COMPARISION.
The following example shows a text snippet with the information provided in the test data:
Korean, a \<entity id=”H01-1041.10”>verb final language\</entity>with\<entity id=”H01-1041.11”>overt case markers\</entity>(...)
- A relation instance is identified by the unique identifier of the entities in the pair, e.g.(H01-1041.10, H01-1041.11)
- The information to be predicted is the relation class label: MODEL-FEATURE(H01-1041.10, H01-1041.11).
For details, see the paper https://aclanthology.org/S18-1111/.
### Supported Tasks and Leaderboards
- **Tasks:** Relation extraction and classification in scientific papers
- **Leaderboards:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
### Languages
The language in the dataset is English.
## Dataset Structure
### Data Instances
#### subtask_1.1
- **Size of downloaded dataset files:** 714 KB
An example of 'train' looks as follows:
```json
{
"id": "H01-1041",
"title": "'Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLING'",
"abstract": 'At MIT Lincoln Laboratory, we have been developing a Korean-to-English machine translation system CCLINC (Common Coalition Language System at Lincoln Laboratory) . The CCLINC Korean-to-English translation system consists of two core modules , language understanding and generation modules mediated by a language neutral meaning representation called a semantic frame . The key features of the system include: (i) Robust efficient parsing of Korean (a verb final language with overt case markers , relatively free word order , and frequent omissions of arguments ). (ii) High quality translation via word sense disambiguation and accurate word order generation of the target language . (iii) Rapid system development and porting to new domains via knowledge-based automated acquisition of grammars . Having been trained on Korean newspaper articles on missiles and chemical biological warfare, the system produces the translation output sufficient for content understanding of the original document.
"entities": [{'id': 'H01-1041.1', 'char_start': 54, 'char_end': 97},
{'id': 'H01-1041.2', 'char_start': 99, 'char_end': 161},
{'id': 'H01-1041.3', 'char_start': 169, 'char_end': 211},
{'id': 'H01-1041.4', 'char_start': 229, 'char_end': 240},
{'id': 'H01-1041.5', 'char_start': 244, 'char_end': 288},
{'id': 'H01-1041.6', 'char_start': 304, 'char_end': 342},
{'id': 'H01-1041.7', 'char_start': 353, 'char_end': 366},
{'id': 'H01-1041.8', 'char_start': 431, 'char_end': 437},
{'id': 'H01-1041.9', 'char_start': 442, 'char_end': 447},
{'id': 'H01-1041.10', 'char_start': 452, 'char_end': 470},
{'id': 'H01-1041.11', 'char_start': 477, 'char_end': 494},
{'id': 'H01-1041.12', 'char_start': 509, 'char_end': 523},
{'id': 'H01-1041.13', 'char_start': 553, 'char_end': 561},
{'id': 'H01-1041.14', 'char_start': 584, 'char_end': 594},
{'id': 'H01-1041.15', 'char_start': 600, 'char_end': 624},
{'id': 'H01-1041.16', 'char_start': 639, 'char_end': 659},
{'id': 'H01-1041.17', 'char_start': 668, 'char_end': 682},
{'id': 'H01-1041.18', 'char_start': 692, 'char_end': 715},
{'id': 'H01-1041.19', 'char_start': 736, 'char_end': 742},
{'id': 'H01-1041.20', 'char_start': 748, 'char_end': 796},
{'id': 'H01-1041.21', 'char_start': 823, 'char_end': 847},
{'id': 'H01-1041.22', 'char_start': 918, 'char_end': 935},
{'id': 'H01-1041.23', 'char_start': 981, 'char_end': 997}],
}
"relation": [{'label': 3, 'arg1': 'H01-1041.3', 'arg2': 'H01-1041.4', 'reverse': True},
{'label': 0, 'arg1': 'H01-1041.8', 'arg2': 'H01-1041.9', 'reverse': False},
{'label': 2, 'arg1': 'H01-1041.10', 'arg2': 'H01-1041.11', 'reverse': True},
{'label': 0, 'arg1': 'H01-1041.14', 'arg2': 'H01-1041.15', 'reverse': True}]
```
#### Subtask_1.2
- **Size of downloaded dataset files:** 1.00 MB
An example of 'train' looks as follows:
```json
{'id': 'L08-1450',
'title': '\nA LAF/GrAF based Encoding Scheme for underspecified Representations of syntactic Annotations.\n',
'abstract': 'Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified representations are particularly well suited for the representation of ambiguousdata because they allow for high informational efficiency. We discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete documentation of linguistic analyses. The main topic of this article is adata model and an encoding scheme based on LAF/GrAF ( Ide and Romary, 2006 ; Ide and Suderman, 2007 ) which provides a flexible framework for encoding underspecified representations. We show how a set of dependency structures and a set of TiGer graphs ( Brants et al., 2002 ) representing the readings of an ambiguous sentence can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.\n',
'entities': [{'id': 'L08-1450.4', 'char_start': 0, 'char_end': 3},
{'id': 'L08-1450.5', 'char_start': 5, 'char_end': 10},
{'id': 'L08-1450.6', 'char_start': 25, 'char_end': 31},
{'id': 'L08-1450.7', 'char_start': 61, 'char_end': 64},
{'id': 'L08-1450.8', 'char_start': 66, 'char_end': 72},
{'id': 'L08-1450.9', 'char_start': 82, 'char_end': 85},
{'id': 'L08-1450.10', 'char_start': 92, 'char_end': 100},
{'id': 'L08-1450.11', 'char_start': 102, 'char_end': 110},
{'id': 'L08-1450.12', 'char_start': 128, 'char_end': 142},
{'id': 'L08-1450.13', 'char_start': 181, 'char_end': 194},
{'id': 'L08-1450.14', 'char_start': 208, 'char_end': 211},
{'id': 'L08-1450.15', 'char_start': 255, 'char_end': 264},
{'id': 'L08-1450.16', 'char_start': 282, 'char_end': 286},
{'id': 'L08-1450.17', 'char_start': 408, 'char_end': 420},
{'id': 'L08-1450.18', 'char_start': 425, 'char_end': 443},
{'id': 'L08-1450.19', 'char_start': 450, 'char_end': 453},
{'id': 'L08-1450.20', 'char_start': 455, 'char_end': 459},
{'id': 'L08-1450.21', 'char_start': 481, 'char_end': 484},
{'id': 'L08-1450.22', 'char_start': 486, 'char_end': 490},
{'id': 'L08-1450.23', 'char_start': 508, 'char_end': 513},
{'id': 'L08-1450.24', 'char_start': 515, 'char_end': 519},
{'id': 'L08-1450.25', 'char_start': 535, 'char_end': 537},
{'id': 'L08-1450.26', 'char_start': 559, 'char_end': 561},
{'id': 'L08-1450.27', 'char_start': 591, 'char_end': 598},
{'id': 'L08-1450.28', 'char_start': 611, 'char_end': 619},
{'id': 'L08-1450.29', 'char_start': 649, 'char_end': 663},
{'id': 'L08-1450.30', 'char_start': 687, 'char_end': 707},
{'id': 'L08-1450.31', 'char_start': 722, 'char_end': 726},
{'id': 'L08-1450.32', 'char_start': 801, 'char_end': 808},
{'id': 'L08-1450.33', 'char_start': 841, 'char_end': 845},
{'id': 'L08-1450.34', 'char_start': 847, 'char_end': 852},
{'id': 'L08-1450.35', 'char_start': 857, 'char_end': 864},
{'id': 'L08-1450.36', 'char_start': 866, 'char_end': 872},
{'id': 'L08-1450.37', 'char_start': 902, 'char_end': 910},
{'id': 'L08-1450.1', 'char_start': 12, 'char_end': 16},
{'id': 'L08-1450.2', 'char_start': 27, 'char_end': 32},
{'id': 'L08-1450.3', 'char_start': 72, 'char_end': 80}],
'relation': [{'label': 1,
'arg1': 'L08-1450.12',
'arg2': 'L08-1450.13',
'reverse': False},
{'label': 5, 'arg1': 'L08-1450.17', 'arg2': 'L08-1450.18', 'reverse': False},
{'label': 1, 'arg1': 'L08-1450.28', 'arg2': 'L08-1450.29', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.30', 'arg2': 'L08-1450.32', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.34', 'arg2': 'L08-1450.35', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.36', 'arg2': 'L08-1450.37', 'reverse': True}]}
[ ]
```
### Data Fields
#### subtask_1_1
- `id`: the instance id of this abstract, a `string` feature.
- `title`: the title of this abstract, a `string` feature
- `abstract`: the abstract from the scientific papers, a `string` feature
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
- `id`: the instance id of this sentence, a `string` feature.
- `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
- `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
- `label`: the list of relations between the key phrases, a `list` of classification labels.
- `arg1`: the entity id of this key phrase, a `string` feature.
- `arg2`: the entity id of the related key phrase, a `string` feature.
- `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
```python
RELATIONS
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
```
#### subtask_1_2
- `id`: the instance id of this abstract, a `string` feature.
- `title`: the title of this abstract, a `string` feature
- `abstract`: the abstract from the scientific papers, a `string` feature
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
- `id`: the instance id of this sentence, a `string` feature.
- `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
- `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
- `label`: the list of relations between the key phrases, a `list` of classification labels.
- `arg1`: the entity id of this key phrase, a `string` feature.
- `arg2`: the entity id of the related key phrase, a `string` feature.
- `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
```python
RELATIONS
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
```
### Data Splits
| | | Train| Test |
|-------------|-----------|------|------|
| subtask_1_1 | text | 2807 | 3326 |
| | relations | 1228 | 1248 |
| subtask_1_2 | text | 1196 | 1193 |
| | relations | 335 | 355 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{gabor-etal-2018-semeval,
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
author = {G{\'a}bor, Kata and
Buscaldi, Davide and
Schumann, Anne-Kathrin and
QasemiZadeh, Behrang and
Zargayouna, Ha{\"\i}fa and
Charnois, Thierry},
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1111",
doi = "10.18653/v1/S18-1111",
pages = "679--688",
abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.",
}
```
### Contributions
Thanks to [@basvoju](https://github.com/basvoju) for adding this dataset. |