Basvoju commited on
Commit
6cd79ca
·
1 Parent(s): 4eaa197

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +447 -12
README.md CHANGED
@@ -1,15 +1,450 @@
1
- ---
2
- license: other
 
3
  language:
4
  - en
5
- task_categories:
6
- - token-classification
7
- tags:
8
- - scientific papers
9
- - research papers
10
- pretty_name: >-
11
- Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction
12
- and Classification in Scientific Papers
13
  size_categories:
14
- - 1K<n<10K
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ annotations_creators:
3
+ - expert-generated
4
  language:
5
  - en
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - other
10
+ multilinguality:
11
+ - monolingual
12
+ paperswithcode_id: acronym-identification
13
+ pretty_name: Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
14
  size_categories:
15
+ - 10K<n<100K
16
+ source_datasets: []
17
+ tags:
18
+ - Research papers
19
+ - Scientific papers
20
+ - Semantic Relations Extraction
21
+ - Entity Tagging
22
+ task_categories:
23
+ - relation-extraction
24
+ task_ids:
25
+ - semantic-similarity-classification
26
+ task: relation-classification, relation-extraction
27
+ task_id: entity_extraction
28
+
29
+ dataset_info:
30
+ - config_name: subtask1_1
31
+ features:
32
+ - name: id
33
+ dtype: string
34
+ - name: title
35
+ sequence: string
36
+ - name: abstract
37
+ sequence: string
38
+ - name: entities
39
+ sequence:
40
+ - name: 'id'
41
+ dtype: string
42
+ - name: 'char_start'
43
+ dtype: int
44
+ - name: 'char_end'
45
+ dtype: int
46
+ - name: relation
47
+ sequence:
48
+ - name: 'label'
49
+ dtype: string
50
+ - name: 'arg1'
51
+ dtype: string
52
+ - name: 'arg2'
53
+ dtype: string
54
+ - name: 'reverse'
55
+ dtype: 'bool'
56
+
57
+ class_label:
58
+ names:
59
+ '0':
60
+ '1': USAGE
61
+ '2': RESULT
62
+ '3': MODEL-FEATURE
63
+ '4': PART_WHOLE
64
+ '5': TOPIC
65
+ '6': COMPARE
66
+
67
+
68
+ - Splits:
69
+ - name: train
70
+ - text
71
+ num_bytes: 460 KB
72
+ num_examples: 2807
73
+ - relations:
74
+ num_bytes: 42.7 KB
75
+ num_examples: 1228
76
+ - name: test
77
+ - text
78
+ num_bytes: 203 KB
79
+ num_examples: 1196
80
+ - relations:
81
+ num_bytes: 9.42 KB
82
+ num_examples: 335
83
+
84
+ download_size: 714 KB
85
+
86
+
87
+ - config_name: sub_task_1_2
88
+
89
+ features:
90
+ - name: id
91
+ dtype: string
92
+ - name: title
93
+ sequence: string
94
+ - name: abstract
95
+ sequence: string
96
+ - name: entities
97
+ sequence:
98
+ - name: 'id'
99
+ dtype: string
100
+ - name: 'char_start'
101
+ dtype: int
102
+ - name: 'char_end'
103
+ dtype: int
104
+ - name: relation
105
+ sequence:
106
+ - name: 'label'
107
+ dtype: string
108
+ - name: 'arg1'
109
+ dtype: string
110
+ - name: 'arg2'
111
+ dtype: string
112
+ - name: 'reverse'
113
+ dtype: 'bool'
114
+ ```json
115
+ class_label:
116
+ names:
117
+ '0':
118
+ '1': USAGE
119
+ '2': RESULT
120
+ '3': MODEL-FEATURE
121
+ '4': PART_WHOLE
122
+ '5': TOPIC
123
+ '6': COMPARE
124
+
125
+
126
+ - Splits:
127
+ - name: train
128
+ - text
129
+ num_bytes: 696 KB
130
+ num_examples: 3326
131
+ - relations:
132
+ num_bytes: 42.1 KB
133
+ num_examples: 1248
134
+ - name: test
135
+ - text
136
+ num_bytes: 285 KB
137
+ num_examples: 1193
138
+ - relations:
139
+ num_bytes: 9.51 KB
140
+ num_examples: 355
141
+ download_size: 1.00 MB
142
+ ---
143
+
144
+ # Dataset Card for SemEval2018Task7
145
+
146
+ ## Table of Contents
147
+ - [Table of Contents](#table-of-contents)
148
+ - [Dataset Description](#dataset-description)
149
+ - [Dataset Summary](#dataset-summary)
150
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
151
+ - [Languages](#languages)
152
+ - [Dataset Structure](#dataset-structure)
153
+ - [Data Instances](#data-instances)
154
+ - [Data Fields](#data-fields)
155
+ - [Data Splits](#data-splits)
156
+ - [Dataset Creation](#dataset-creation)
157
+ - [Curation Rationale](#curation-rationale)
158
+ - [Source Data](#source-data)
159
+ - [Annotations](#annotations)
160
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
161
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
162
+ - [Social Impact of Dataset](#social-impact-of-dataset)
163
+ - [Discussion of Biases](#discussion-of-biases)
164
+ - [Other Known Limitations](#other-known-limitations)
165
+ - [Additional Information](#additional-information)
166
+ - [Dataset Curators](#dataset-curators)
167
+ - [Licensing Information](#licensing-information)
168
+ - [Citation Information](#citation-information)
169
+ - [Contributions](#contributions)
170
+
171
+ ## Dataset Description
172
+
173
+ - **Homepage:** [https://lipn.univ-paris13.fr/~gabor/semeval2018task7/](https://lipn.univ-paris13.fr/~gabor/semeval2018task7/)
174
+ - **Repository:** [https://github.com/gkata/SemEval2018Task7/tree/testing](https://github.com/gkata/SemEval2018Task7/tree/testing)
175
+ - **Paper:** [SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers](https://aclanthology.org/S18-1111/)
176
+ - **Leaderboard:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
177
+ - **Size of downloaded dataset files:** 1.93 MB
178
+
179
+ ### Dataset Summary
180
+
181
+ Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
182
+ The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
183
+
184
+ The three subtasks are:
185
+
186
+ - Subtask 1.1: Relation classification on
187
+ clean data
188
+ - In the training data, semantic relations are manually annotated between entities.
189
+ - In the test data, only entity annotations and unlabeled relation instances are given.
190
+ - Given a scientific publication, The task is to predict the semantic relation between the entities.
191
+
192
+ - Subtask 1.2: Relation classification on
193
+ noisy data
194
+ - Entity occurrences are automatically annotated in both the training and the test data.
195
+ - The task is to predict the semantic
196
+ relation between the entities.
197
+
198
+ - Subtask 2: Metrics for the extraction and classification scenario
199
+ - Evaluation of relation extraction
200
+ - Evaluation of relation classification
201
+
202
+ The Relations types are USAGE, RESULT, MODEL, PART_WHOLE, TOPIC, COMPARISION.
203
+
204
+ The following example shows a text snippet with the information provided in the test data:
205
+ Korean, a \<entity id=”H01-1041.10”>verb final language\</entity>with\<entity id=”H01-1041.11”>overt case markers\</entity>(...)
206
+ - A relation instance is identified by the unique identifier of the entities in the pair, e.g.(H01-1041.10, H01-1041.11)
207
+ - The information to be predicted is the relation class label: MODEL-FEATURE(H01-1041.10, H01-1041.11).
208
+
209
+
210
+ ### Supported Tasks and Leaderboards
211
+
212
+ - **Tasks:** Relation extraction and classification in scientific papers
213
+ - **Leaderboards:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
214
+
215
+ ### Languages
216
+
217
+ The language in the dataset is English.
218
+
219
+ ## Dataset Structure
220
+
221
+ ### Data Instances
222
+
223
+ #### subtask_1.1
224
+ - **Size of downloaded dataset files:** 714 KB
225
+
226
+ An example of 'train' looks as follows:
227
+ ```json
228
+ {
229
+ "id": "H01-1041",
230
+ "title": "'Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLING'",
231
+ "abstract": 'At MIT Lincoln Laboratory, we have been developing a Korean-to-English machine translation system CCLINC (Common Coalition Language System at Lincoln Laboratory) . The CCLINC Korean-to-English translation system consists of two core modules , language understanding and generation modules mediated by a language neutral meaning representation called a semantic frame . The key features of the system include: (i) Robust efficient parsing of Korean (a verb final language with overt case markers , relatively free word order , and frequent omissions of arguments ). (ii) High quality translation via word sense disambiguation and accurate word order generation of the target language . (iii) Rapid system development and porting to new domains via knowledge-based automated acquisition of grammars . Having been trained on Korean newspaper articles on missiles and chemical biological warfare, the system produces the translation output sufficient for content understanding of the original document.
232
+ "entities": [{'id': 'H01-1041.1', 'char_start': 54, 'char_end': 97},
233
+ {'id': 'H01-1041.2', 'char_start': 99, 'char_end': 161},
234
+ {'id': 'H01-1041.3', 'char_start': 169, 'char_end': 211},
235
+ {'id': 'H01-1041.4', 'char_start': 229, 'char_end': 240},
236
+ {'id': 'H01-1041.5', 'char_start': 244, 'char_end': 288},
237
+ {'id': 'H01-1041.6', 'char_start': 304, 'char_end': 342},
238
+ {'id': 'H01-1041.7', 'char_start': 353, 'char_end': 366},
239
+ {'id': 'H01-1041.8', 'char_start': 431, 'char_end': 437},
240
+ {'id': 'H01-1041.9', 'char_start': 442, 'char_end': 447},
241
+ {'id': 'H01-1041.10', 'char_start': 452, 'char_end': 470},
242
+ {'id': 'H01-1041.11', 'char_start': 477, 'char_end': 494},
243
+ {'id': 'H01-1041.12', 'char_start': 509, 'char_end': 523},
244
+ {'id': 'H01-1041.13', 'char_start': 553, 'char_end': 561},
245
+ {'id': 'H01-1041.14', 'char_start': 584, 'char_end': 594},
246
+ {'id': 'H01-1041.15', 'char_start': 600, 'char_end': 624},
247
+ {'id': 'H01-1041.16', 'char_start': 639, 'char_end': 659},
248
+ {'id': 'H01-1041.17', 'char_start': 668, 'char_end': 682},
249
+ {'id': 'H01-1041.18', 'char_start': 692, 'char_end': 715},
250
+ {'id': 'H01-1041.19', 'char_start': 736, 'char_end': 742},
251
+ {'id': 'H01-1041.20', 'char_start': 748, 'char_end': 796},
252
+ {'id': 'H01-1041.21', 'char_start': 823, 'char_end': 847},
253
+ {'id': 'H01-1041.22', 'char_start': 918, 'char_end': 935},
254
+ {'id': 'H01-1041.23', 'char_start': 981, 'char_end': 997}],
255
+ }
256
+ "relation": [{'label': 3, 'arg1': 'H01-1041.3', 'arg2': 'H01-1041.4', 'reverse': True},
257
+ {'label': 0, 'arg1': 'H01-1041.8', 'arg2': 'H01-1041.9', 'reverse': False},
258
+ {'label': 2, 'arg1': 'H01-1041.10', 'arg2': 'H01-1041.11', 'reverse': True},
259
+ {'label': 0, 'arg1': 'H01-1041.14', 'arg2': 'H01-1041.15', 'reverse': True}]
260
+
261
+ ```
262
+ #### Subtask_1.2
263
+ - **Size of downloaded dataset files:** 1.00 MB
264
+
265
+ An example of 'train' looks as follows:
266
+ ```json
267
+ {'id': 'L08-1450',
268
+ 'title': '\nA LAF/GrAF based Encoding Scheme for underspecified Representations of syntactic Annotations.\n',
269
+ 'abstract': 'Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified representations are particularly well suited for the representation of ambiguousdata because they allow for high informational efficiency. We discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete documentation of linguistic analyses. The main topic of this article is adata model and an encoding scheme based on LAF/GrAF ( Ide and Romary, 2006 ; Ide and Suderman, 2007 ) which provides a flexible framework for encoding underspecified representations. We show how a set of dependency structures and a set of TiGer graphs ( Brants et al., 2002 ) representing the readings of an ambiguous sentence can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.\n',
270
+ 'entities': [{'id': 'L08-1450.4', 'char_start': 0, 'char_end': 3},
271
+ {'id': 'L08-1450.5', 'char_start': 5, 'char_end': 10},
272
+ {'id': 'L08-1450.6', 'char_start': 25, 'char_end': 31},
273
+ {'id': 'L08-1450.7', 'char_start': 61, 'char_end': 64},
274
+ {'id': 'L08-1450.8', 'char_start': 66, 'char_end': 72},
275
+ {'id': 'L08-1450.9', 'char_start': 82, 'char_end': 85},
276
+ {'id': 'L08-1450.10', 'char_start': 92, 'char_end': 100},
277
+ {'id': 'L08-1450.11', 'char_start': 102, 'char_end': 110},
278
+ {'id': 'L08-1450.12', 'char_start': 128, 'char_end': 142},
279
+ {'id': 'L08-1450.13', 'char_start': 181, 'char_end': 194},
280
+ {'id': 'L08-1450.14', 'char_start': 208, 'char_end': 211},
281
+ {'id': 'L08-1450.15', 'char_start': 255, 'char_end': 264},
282
+ {'id': 'L08-1450.16', 'char_start': 282, 'char_end': 286},
283
+ {'id': 'L08-1450.17', 'char_start': 408, 'char_end': 420},
284
+ {'id': 'L08-1450.18', 'char_start': 425, 'char_end': 443},
285
+ {'id': 'L08-1450.19', 'char_start': 450, 'char_end': 453},
286
+ {'id': 'L08-1450.20', 'char_start': 455, 'char_end': 459},
287
+ {'id': 'L08-1450.21', 'char_start': 481, 'char_end': 484},
288
+ {'id': 'L08-1450.22', 'char_start': 486, 'char_end': 490},
289
+ {'id': 'L08-1450.23', 'char_start': 508, 'char_end': 513},
290
+ {'id': 'L08-1450.24', 'char_start': 515, 'char_end': 519},
291
+ {'id': 'L08-1450.25', 'char_start': 535, 'char_end': 537},
292
+ {'id': 'L08-1450.26', 'char_start': 559, 'char_end': 561},
293
+ {'id': 'L08-1450.27', 'char_start': 591, 'char_end': 598},
294
+ {'id': 'L08-1450.28', 'char_start': 611, 'char_end': 619},
295
+ {'id': 'L08-1450.29', 'char_start': 649, 'char_end': 663},
296
+ {'id': 'L08-1450.30', 'char_start': 687, 'char_end': 707},
297
+ {'id': 'L08-1450.31', 'char_start': 722, 'char_end': 726},
298
+ {'id': 'L08-1450.32', 'char_start': 801, 'char_end': 808},
299
+ {'id': 'L08-1450.33', 'char_start': 841, 'char_end': 845},
300
+ {'id': 'L08-1450.34', 'char_start': 847, 'char_end': 852},
301
+ {'id': 'L08-1450.35', 'char_start': 857, 'char_end': 864},
302
+ {'id': 'L08-1450.36', 'char_start': 866, 'char_end': 872},
303
+ {'id': 'L08-1450.37', 'char_start': 902, 'char_end': 910},
304
+ {'id': 'L08-1450.1', 'char_start': 12, 'char_end': 16},
305
+ {'id': 'L08-1450.2', 'char_start': 27, 'char_end': 32},
306
+ {'id': 'L08-1450.3', 'char_start': 72, 'char_end': 80}],
307
+ 'relation': [{'label': 1,
308
+ 'arg1': 'L08-1450.12',
309
+ 'arg2': 'L08-1450.13',
310
+ 'reverse': False},
311
+ {'label': 5, 'arg1': 'L08-1450.17', 'arg2': 'L08-1450.18', 'reverse': False},
312
+ {'label': 1, 'arg1': 'L08-1450.28', 'arg2': 'L08-1450.29', 'reverse': False},
313
+ {'label': 3, 'arg1': 'L08-1450.30', 'arg2': 'L08-1450.32', 'reverse': False},
314
+ {'label': 3, 'arg1': 'L08-1450.34', 'arg2': 'L08-1450.35', 'reverse': False},
315
+ {'label': 3, 'arg1': 'L08-1450.36', 'arg2': 'L08-1450.37', 'reverse': True}]}
316
+ [ ]
317
+
318
+ ```
319
+
320
+
321
+ ### Data Fields
322
+
323
+ #### subtask_a
324
+ - `id`: the instance id of this abstract, a `string` feature.
325
+ - `title`: the title of this abstract, a `string` feature
326
+ - `abstract`: the abstract from the scientific papers, a `string` feature
327
+ - `entities`: the entity id's for the key phrases, a `list` of entity id's.
328
+ - `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
329
+
330
+
331
+ #### subtask_b
332
+ - `id`: the instance id of this abstract, a `string` feature.
333
+ - `title`: the title of this abstract, a `string` feature
334
+ - `abstract`: the abstract from the scientific papers, a `string` feature
335
+ - `entities`: the entity id's for the key phrases, a `list` of entity id's.
336
+ - `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
337
+
338
+ #### subtask_c
339
+ - `id`: the instance id of this abstract, a `string` feature.
340
+ - `title`: the title of this abstract, a `string` feature
341
+ - `abstract`: the abstract from the scientific papers, a `string` feature
342
+ - `entities`: the entity id's for the key phrases, a `list` of entity id's.
343
+ - `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
344
+
345
+ #### entities
346
+ - `id`: the instance id of this sentence, a `string` feature.
347
+ - `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
348
+ - `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
349
+
350
+ #### relation
351
+ - `label`: the list of relations between the key phrases, a `list` of classification labels.
352
+ - `arg1`: the entity id of this key phrase, a `string` feature.
353
+ - `arg2`: the entity id of the related key phrase, a `string` feature.
354
+ - `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
355
+
356
+ ```python
357
+ RELATIONS
358
+ {"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
359
+ ```
360
+
361
+
362
+ ### Data Splits
363
+
364
+ | | Train | Train| Test |
365
+ |-------------|-----------|------|------|
366
+ | subtask_1_1 | text | 2807 | 3326 |
367
+ | | relations | 1228 | 1248 |
368
+ | subtask_1_2 | text | 1196 | 1193 |
369
+ | | relations | 335 | 355 |
370
+
371
+ ## Dataset Creation
372
+
373
+ ### Curation Rationale
374
+
375
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
376
+
377
+ ### Source Data
378
+
379
+ #### Initial Data Collection and Normalization
380
+
381
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
382
+
383
+ #### Who are the source language producers?
384
+
385
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
386
+
387
+ ### Annotations
388
+
389
+ #### Annotation process
390
+
391
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
392
+
393
+ #### Who are the annotators?
394
+
395
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
396
+
397
+ ### Personal and Sensitive Information
398
+
399
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
400
+
401
+ ## Considerations for Using the Data
402
+
403
+ ### Social Impact of Dataset
404
+
405
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
406
+
407
+ ### Discussion of Biases
408
+
409
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
410
+
411
+ ### Other Known Limitations
412
+
413
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
414
+
415
+ ## Additional Information
416
+
417
+ ### Dataset Curators
418
+
419
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
420
+
421
+ ### Licensing Information
422
+
423
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
424
+
425
+ ### Citation Information
426
+
427
+ ```
428
+ @inproceedings{gabor-etal-2018-semeval,
429
+ title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
430
+ author = {G{\'a}bor, Kata and
431
+ Buscaldi, Davide and
432
+ Schumann, Anne-Kathrin and
433
+ QasemiZadeh, Behrang and
434
+ Zargayouna, Ha{\"\i}fa and
435
+ Charnois, Thierry},
436
+ booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
437
+ month = jun,
438
+ year = "2018",
439
+ address = "New Orleans, Louisiana",
440
+ publisher = "Association for Computational Linguistics",
441
+ url = "https://aclanthology.org/S18-1111",
442
+ doi = "10.18653/v1/S18-1111",
443
+ pages = "679--688",
444
+ abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.",
445
+ }
446
+ ```
447
+ ### Contributions
448
+
449
+ Thanks to [@basvoju](https://github.com/basvoju) for adding this dataset.
450
+