Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,15 +1,450 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
language:
|
4 |
- en
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
size_categories:
|
14 |
-
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
language:
|
5 |
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license:
|
9 |
+
- other
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
paperswithcode_id: acronym-identification
|
13 |
+
pretty_name: Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
|
14 |
size_categories:
|
15 |
+
- 10K<n<100K
|
16 |
+
source_datasets: []
|
17 |
+
tags:
|
18 |
+
- Research papers
|
19 |
+
- Scientific papers
|
20 |
+
- Semantic Relations Extraction
|
21 |
+
- Entity Tagging
|
22 |
+
task_categories:
|
23 |
+
- relation-extraction
|
24 |
+
task_ids:
|
25 |
+
- semantic-similarity-classification
|
26 |
+
task: relation-classification, relation-extraction
|
27 |
+
task_id: entity_extraction
|
28 |
+
|
29 |
+
dataset_info:
|
30 |
+
- config_name: subtask1_1
|
31 |
+
features:
|
32 |
+
- name: id
|
33 |
+
dtype: string
|
34 |
+
- name: title
|
35 |
+
sequence: string
|
36 |
+
- name: abstract
|
37 |
+
sequence: string
|
38 |
+
- name: entities
|
39 |
+
sequence:
|
40 |
+
- name: 'id'
|
41 |
+
dtype: string
|
42 |
+
- name: 'char_start'
|
43 |
+
dtype: int
|
44 |
+
- name: 'char_end'
|
45 |
+
dtype: int
|
46 |
+
- name: relation
|
47 |
+
sequence:
|
48 |
+
- name: 'label'
|
49 |
+
dtype: string
|
50 |
+
- name: 'arg1'
|
51 |
+
dtype: string
|
52 |
+
- name: 'arg2'
|
53 |
+
dtype: string
|
54 |
+
- name: 'reverse'
|
55 |
+
dtype: 'bool'
|
56 |
+
|
57 |
+
class_label:
|
58 |
+
names:
|
59 |
+
'0':
|
60 |
+
'1': USAGE
|
61 |
+
'2': RESULT
|
62 |
+
'3': MODEL-FEATURE
|
63 |
+
'4': PART_WHOLE
|
64 |
+
'5': TOPIC
|
65 |
+
'6': COMPARE
|
66 |
+
|
67 |
+
|
68 |
+
- Splits:
|
69 |
+
- name: train
|
70 |
+
- text
|
71 |
+
num_bytes: 460 KB
|
72 |
+
num_examples: 2807
|
73 |
+
- relations:
|
74 |
+
num_bytes: 42.7 KB
|
75 |
+
num_examples: 1228
|
76 |
+
- name: test
|
77 |
+
- text
|
78 |
+
num_bytes: 203 KB
|
79 |
+
num_examples: 1196
|
80 |
+
- relations:
|
81 |
+
num_bytes: 9.42 KB
|
82 |
+
num_examples: 335
|
83 |
+
|
84 |
+
download_size: 714 KB
|
85 |
+
|
86 |
+
|
87 |
+
- config_name: sub_task_1_2
|
88 |
+
|
89 |
+
features:
|
90 |
+
- name: id
|
91 |
+
dtype: string
|
92 |
+
- name: title
|
93 |
+
sequence: string
|
94 |
+
- name: abstract
|
95 |
+
sequence: string
|
96 |
+
- name: entities
|
97 |
+
sequence:
|
98 |
+
- name: 'id'
|
99 |
+
dtype: string
|
100 |
+
- name: 'char_start'
|
101 |
+
dtype: int
|
102 |
+
- name: 'char_end'
|
103 |
+
dtype: int
|
104 |
+
- name: relation
|
105 |
+
sequence:
|
106 |
+
- name: 'label'
|
107 |
+
dtype: string
|
108 |
+
- name: 'arg1'
|
109 |
+
dtype: string
|
110 |
+
- name: 'arg2'
|
111 |
+
dtype: string
|
112 |
+
- name: 'reverse'
|
113 |
+
dtype: 'bool'
|
114 |
+
```json
|
115 |
+
class_label:
|
116 |
+
names:
|
117 |
+
'0':
|
118 |
+
'1': USAGE
|
119 |
+
'2': RESULT
|
120 |
+
'3': MODEL-FEATURE
|
121 |
+
'4': PART_WHOLE
|
122 |
+
'5': TOPIC
|
123 |
+
'6': COMPARE
|
124 |
+
|
125 |
+
|
126 |
+
- Splits:
|
127 |
+
- name: train
|
128 |
+
- text
|
129 |
+
num_bytes: 696 KB
|
130 |
+
num_examples: 3326
|
131 |
+
- relations:
|
132 |
+
num_bytes: 42.1 KB
|
133 |
+
num_examples: 1248
|
134 |
+
- name: test
|
135 |
+
- text
|
136 |
+
num_bytes: 285 KB
|
137 |
+
num_examples: 1193
|
138 |
+
- relations:
|
139 |
+
num_bytes: 9.51 KB
|
140 |
+
num_examples: 355
|
141 |
+
download_size: 1.00 MB
|
142 |
+
---
|
143 |
+
|
144 |
+
# Dataset Card for SemEval2018Task7
|
145 |
+
|
146 |
+
## Table of Contents
|
147 |
+
- [Table of Contents](#table-of-contents)
|
148 |
+
- [Dataset Description](#dataset-description)
|
149 |
+
- [Dataset Summary](#dataset-summary)
|
150 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
151 |
+
- [Languages](#languages)
|
152 |
+
- [Dataset Structure](#dataset-structure)
|
153 |
+
- [Data Instances](#data-instances)
|
154 |
+
- [Data Fields](#data-fields)
|
155 |
+
- [Data Splits](#data-splits)
|
156 |
+
- [Dataset Creation](#dataset-creation)
|
157 |
+
- [Curation Rationale](#curation-rationale)
|
158 |
+
- [Source Data](#source-data)
|
159 |
+
- [Annotations](#annotations)
|
160 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
161 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
162 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
163 |
+
- [Discussion of Biases](#discussion-of-biases)
|
164 |
+
- [Other Known Limitations](#other-known-limitations)
|
165 |
+
- [Additional Information](#additional-information)
|
166 |
+
- [Dataset Curators](#dataset-curators)
|
167 |
+
- [Licensing Information](#licensing-information)
|
168 |
+
- [Citation Information](#citation-information)
|
169 |
+
- [Contributions](#contributions)
|
170 |
+
|
171 |
+
## Dataset Description
|
172 |
+
|
173 |
+
- **Homepage:** [https://lipn.univ-paris13.fr/~gabor/semeval2018task7/](https://lipn.univ-paris13.fr/~gabor/semeval2018task7/)
|
174 |
+
- **Repository:** [https://github.com/gkata/SemEval2018Task7/tree/testing](https://github.com/gkata/SemEval2018Task7/tree/testing)
|
175 |
+
- **Paper:** [SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers](https://aclanthology.org/S18-1111/)
|
176 |
+
- **Leaderboard:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
|
177 |
+
- **Size of downloaded dataset files:** 1.93 MB
|
178 |
+
|
179 |
+
### Dataset Summary
|
180 |
+
|
181 |
+
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers.
|
182 |
+
The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
|
183 |
+
|
184 |
+
The three subtasks are:
|
185 |
+
|
186 |
+
- Subtask 1.1: Relation classification on
|
187 |
+
clean data
|
188 |
+
- In the training data, semantic relations are manually annotated between entities.
|
189 |
+
- In the test data, only entity annotations and unlabeled relation instances are given.
|
190 |
+
- Given a scientific publication, The task is to predict the semantic relation between the entities.
|
191 |
+
|
192 |
+
- Subtask 1.2: Relation classification on
|
193 |
+
noisy data
|
194 |
+
- Entity occurrences are automatically annotated in both the training and the test data.
|
195 |
+
- The task is to predict the semantic
|
196 |
+
relation between the entities.
|
197 |
+
|
198 |
+
- Subtask 2: Metrics for the extraction and classification scenario
|
199 |
+
- Evaluation of relation extraction
|
200 |
+
- Evaluation of relation classification
|
201 |
+
|
202 |
+
The Relations types are USAGE, RESULT, MODEL, PART_WHOLE, TOPIC, COMPARISION.
|
203 |
+
|
204 |
+
The following example shows a text snippet with the information provided in the test data:
|
205 |
+
Korean, a \<entity id=”H01-1041.10”>verb final language\</entity>with\<entity id=”H01-1041.11”>overt case markers\</entity>(...)
|
206 |
+
- A relation instance is identified by the unique identifier of the entities in the pair, e.g.(H01-1041.10, H01-1041.11)
|
207 |
+
- The information to be predicted is the relation class label: MODEL-FEATURE(H01-1041.10, H01-1041.11).
|
208 |
+
|
209 |
+
|
210 |
+
### Supported Tasks and Leaderboards
|
211 |
+
|
212 |
+
- **Tasks:** Relation extraction and classification in scientific papers
|
213 |
+
- **Leaderboards:** [https://competitions.codalab.org/competitions/17422#learn_the_details-overview](https://competitions.codalab.org/competitions/17422#learn_the_details-overview)
|
214 |
+
|
215 |
+
### Languages
|
216 |
+
|
217 |
+
The language in the dataset is English.
|
218 |
+
|
219 |
+
## Dataset Structure
|
220 |
+
|
221 |
+
### Data Instances
|
222 |
+
|
223 |
+
#### subtask_1.1
|
224 |
+
- **Size of downloaded dataset files:** 714 KB
|
225 |
+
|
226 |
+
An example of 'train' looks as follows:
|
227 |
+
```json
|
228 |
+
{
|
229 |
+
"id": "H01-1041",
|
230 |
+
"title": "'Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLING'",
|
231 |
+
"abstract": 'At MIT Lincoln Laboratory, we have been developing a Korean-to-English machine translation system CCLINC (Common Coalition Language System at Lincoln Laboratory) . The CCLINC Korean-to-English translation system consists of two core modules , language understanding and generation modules mediated by a language neutral meaning representation called a semantic frame . The key features of the system include: (i) Robust efficient parsing of Korean (a verb final language with overt case markers , relatively free word order , and frequent omissions of arguments ). (ii) High quality translation via word sense disambiguation and accurate word order generation of the target language . (iii) Rapid system development and porting to new domains via knowledge-based automated acquisition of grammars . Having been trained on Korean newspaper articles on missiles and chemical biological warfare, the system produces the translation output sufficient for content understanding of the original document.
|
232 |
+
"entities": [{'id': 'H01-1041.1', 'char_start': 54, 'char_end': 97},
|
233 |
+
{'id': 'H01-1041.2', 'char_start': 99, 'char_end': 161},
|
234 |
+
{'id': 'H01-1041.3', 'char_start': 169, 'char_end': 211},
|
235 |
+
{'id': 'H01-1041.4', 'char_start': 229, 'char_end': 240},
|
236 |
+
{'id': 'H01-1041.5', 'char_start': 244, 'char_end': 288},
|
237 |
+
{'id': 'H01-1041.6', 'char_start': 304, 'char_end': 342},
|
238 |
+
{'id': 'H01-1041.7', 'char_start': 353, 'char_end': 366},
|
239 |
+
{'id': 'H01-1041.8', 'char_start': 431, 'char_end': 437},
|
240 |
+
{'id': 'H01-1041.9', 'char_start': 442, 'char_end': 447},
|
241 |
+
{'id': 'H01-1041.10', 'char_start': 452, 'char_end': 470},
|
242 |
+
{'id': 'H01-1041.11', 'char_start': 477, 'char_end': 494},
|
243 |
+
{'id': 'H01-1041.12', 'char_start': 509, 'char_end': 523},
|
244 |
+
{'id': 'H01-1041.13', 'char_start': 553, 'char_end': 561},
|
245 |
+
{'id': 'H01-1041.14', 'char_start': 584, 'char_end': 594},
|
246 |
+
{'id': 'H01-1041.15', 'char_start': 600, 'char_end': 624},
|
247 |
+
{'id': 'H01-1041.16', 'char_start': 639, 'char_end': 659},
|
248 |
+
{'id': 'H01-1041.17', 'char_start': 668, 'char_end': 682},
|
249 |
+
{'id': 'H01-1041.18', 'char_start': 692, 'char_end': 715},
|
250 |
+
{'id': 'H01-1041.19', 'char_start': 736, 'char_end': 742},
|
251 |
+
{'id': 'H01-1041.20', 'char_start': 748, 'char_end': 796},
|
252 |
+
{'id': 'H01-1041.21', 'char_start': 823, 'char_end': 847},
|
253 |
+
{'id': 'H01-1041.22', 'char_start': 918, 'char_end': 935},
|
254 |
+
{'id': 'H01-1041.23', 'char_start': 981, 'char_end': 997}],
|
255 |
+
}
|
256 |
+
"relation": [{'label': 3, 'arg1': 'H01-1041.3', 'arg2': 'H01-1041.4', 'reverse': True},
|
257 |
+
{'label': 0, 'arg1': 'H01-1041.8', 'arg2': 'H01-1041.9', 'reverse': False},
|
258 |
+
{'label': 2, 'arg1': 'H01-1041.10', 'arg2': 'H01-1041.11', 'reverse': True},
|
259 |
+
{'label': 0, 'arg1': 'H01-1041.14', 'arg2': 'H01-1041.15', 'reverse': True}]
|
260 |
+
|
261 |
+
```
|
262 |
+
#### Subtask_1.2
|
263 |
+
- **Size of downloaded dataset files:** 1.00 MB
|
264 |
+
|
265 |
+
An example of 'train' looks as follows:
|
266 |
+
```json
|
267 |
+
{'id': 'L08-1450',
|
268 |
+
'title': '\nA LAF/GrAF based Encoding Scheme for underspecified Representations of syntactic Annotations.\n',
|
269 |
+
'abstract': 'Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified representations are particularly well suited for the representation of ambiguousdata because they allow for high informational efficiency. We discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete documentation of linguistic analyses. The main topic of this article is adata model and an encoding scheme based on LAF/GrAF ( Ide and Romary, 2006 ; Ide and Suderman, 2007 ) which provides a flexible framework for encoding underspecified representations. We show how a set of dependency structures and a set of TiGer graphs ( Brants et al., 2002 ) representing the readings of an ambiguous sentence can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.\n',
|
270 |
+
'entities': [{'id': 'L08-1450.4', 'char_start': 0, 'char_end': 3},
|
271 |
+
{'id': 'L08-1450.5', 'char_start': 5, 'char_end': 10},
|
272 |
+
{'id': 'L08-1450.6', 'char_start': 25, 'char_end': 31},
|
273 |
+
{'id': 'L08-1450.7', 'char_start': 61, 'char_end': 64},
|
274 |
+
{'id': 'L08-1450.8', 'char_start': 66, 'char_end': 72},
|
275 |
+
{'id': 'L08-1450.9', 'char_start': 82, 'char_end': 85},
|
276 |
+
{'id': 'L08-1450.10', 'char_start': 92, 'char_end': 100},
|
277 |
+
{'id': 'L08-1450.11', 'char_start': 102, 'char_end': 110},
|
278 |
+
{'id': 'L08-1450.12', 'char_start': 128, 'char_end': 142},
|
279 |
+
{'id': 'L08-1450.13', 'char_start': 181, 'char_end': 194},
|
280 |
+
{'id': 'L08-1450.14', 'char_start': 208, 'char_end': 211},
|
281 |
+
{'id': 'L08-1450.15', 'char_start': 255, 'char_end': 264},
|
282 |
+
{'id': 'L08-1450.16', 'char_start': 282, 'char_end': 286},
|
283 |
+
{'id': 'L08-1450.17', 'char_start': 408, 'char_end': 420},
|
284 |
+
{'id': 'L08-1450.18', 'char_start': 425, 'char_end': 443},
|
285 |
+
{'id': 'L08-1450.19', 'char_start': 450, 'char_end': 453},
|
286 |
+
{'id': 'L08-1450.20', 'char_start': 455, 'char_end': 459},
|
287 |
+
{'id': 'L08-1450.21', 'char_start': 481, 'char_end': 484},
|
288 |
+
{'id': 'L08-1450.22', 'char_start': 486, 'char_end': 490},
|
289 |
+
{'id': 'L08-1450.23', 'char_start': 508, 'char_end': 513},
|
290 |
+
{'id': 'L08-1450.24', 'char_start': 515, 'char_end': 519},
|
291 |
+
{'id': 'L08-1450.25', 'char_start': 535, 'char_end': 537},
|
292 |
+
{'id': 'L08-1450.26', 'char_start': 559, 'char_end': 561},
|
293 |
+
{'id': 'L08-1450.27', 'char_start': 591, 'char_end': 598},
|
294 |
+
{'id': 'L08-1450.28', 'char_start': 611, 'char_end': 619},
|
295 |
+
{'id': 'L08-1450.29', 'char_start': 649, 'char_end': 663},
|
296 |
+
{'id': 'L08-1450.30', 'char_start': 687, 'char_end': 707},
|
297 |
+
{'id': 'L08-1450.31', 'char_start': 722, 'char_end': 726},
|
298 |
+
{'id': 'L08-1450.32', 'char_start': 801, 'char_end': 808},
|
299 |
+
{'id': 'L08-1450.33', 'char_start': 841, 'char_end': 845},
|
300 |
+
{'id': 'L08-1450.34', 'char_start': 847, 'char_end': 852},
|
301 |
+
{'id': 'L08-1450.35', 'char_start': 857, 'char_end': 864},
|
302 |
+
{'id': 'L08-1450.36', 'char_start': 866, 'char_end': 872},
|
303 |
+
{'id': 'L08-1450.37', 'char_start': 902, 'char_end': 910},
|
304 |
+
{'id': 'L08-1450.1', 'char_start': 12, 'char_end': 16},
|
305 |
+
{'id': 'L08-1450.2', 'char_start': 27, 'char_end': 32},
|
306 |
+
{'id': 'L08-1450.3', 'char_start': 72, 'char_end': 80}],
|
307 |
+
'relation': [{'label': 1,
|
308 |
+
'arg1': 'L08-1450.12',
|
309 |
+
'arg2': 'L08-1450.13',
|
310 |
+
'reverse': False},
|
311 |
+
{'label': 5, 'arg1': 'L08-1450.17', 'arg2': 'L08-1450.18', 'reverse': False},
|
312 |
+
{'label': 1, 'arg1': 'L08-1450.28', 'arg2': 'L08-1450.29', 'reverse': False},
|
313 |
+
{'label': 3, 'arg1': 'L08-1450.30', 'arg2': 'L08-1450.32', 'reverse': False},
|
314 |
+
{'label': 3, 'arg1': 'L08-1450.34', 'arg2': 'L08-1450.35', 'reverse': False},
|
315 |
+
{'label': 3, 'arg1': 'L08-1450.36', 'arg2': 'L08-1450.37', 'reverse': True}]}
|
316 |
+
[ ]
|
317 |
+
|
318 |
+
```
|
319 |
+
|
320 |
+
|
321 |
+
### Data Fields
|
322 |
+
|
323 |
+
#### subtask_a
|
324 |
+
- `id`: the instance id of this abstract, a `string` feature.
|
325 |
+
- `title`: the title of this abstract, a `string` feature
|
326 |
+
- `abstract`: the abstract from the scientific papers, a `string` feature
|
327 |
+
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
|
328 |
+
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
|
329 |
+
|
330 |
+
|
331 |
+
#### subtask_b
|
332 |
+
- `id`: the instance id of this abstract, a `string` feature.
|
333 |
+
- `title`: the title of this abstract, a `string` feature
|
334 |
+
- `abstract`: the abstract from the scientific papers, a `string` feature
|
335 |
+
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
|
336 |
+
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
|
337 |
+
|
338 |
+
#### subtask_c
|
339 |
+
- `id`: the instance id of this abstract, a `string` feature.
|
340 |
+
- `title`: the title of this abstract, a `string` feature
|
341 |
+
- `abstract`: the abstract from the scientific papers, a `string` feature
|
342 |
+
- `entities`: the entity id's for the key phrases, a `list` of entity id's.
|
343 |
+
- `relation`: the list of relations of this sentence marking the relation between the key phrases, a `list` of classification labels.
|
344 |
+
|
345 |
+
#### entities
|
346 |
+
- `id`: the instance id of this sentence, a `string` feature.
|
347 |
+
- `char_start`: the 0-based index of the entity starting, an `ìnt` feature.
|
348 |
+
- `char_end`: the 0-based index of the entity ending, an `ìnt` feature.
|
349 |
+
|
350 |
+
#### relation
|
351 |
+
- `label`: the list of relations between the key phrases, a `list` of classification labels.
|
352 |
+
- `arg1`: the entity id of this key phrase, a `string` feature.
|
353 |
+
- `arg2`: the entity id of the related key phrase, a `string` feature.
|
354 |
+
- `reverse`: the reverse is `True` only if reverse is possible otherwise `False`, a `bool` feature.
|
355 |
+
|
356 |
+
```python
|
357 |
+
RELATIONS
|
358 |
+
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
|
359 |
+
```
|
360 |
+
|
361 |
+
|
362 |
+
### Data Splits
|
363 |
+
|
364 |
+
| | Train | Train| Test |
|
365 |
+
|-------------|-----------|------|------|
|
366 |
+
| subtask_1_1 | text | 2807 | 3326 |
|
367 |
+
| | relations | 1228 | 1248 |
|
368 |
+
| subtask_1_2 | text | 1196 | 1193 |
|
369 |
+
| | relations | 335 | 355 |
|
370 |
+
|
371 |
+
## Dataset Creation
|
372 |
+
|
373 |
+
### Curation Rationale
|
374 |
+
|
375 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
376 |
+
|
377 |
+
### Source Data
|
378 |
+
|
379 |
+
#### Initial Data Collection and Normalization
|
380 |
+
|
381 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
382 |
+
|
383 |
+
#### Who are the source language producers?
|
384 |
+
|
385 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
386 |
+
|
387 |
+
### Annotations
|
388 |
+
|
389 |
+
#### Annotation process
|
390 |
+
|
391 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
392 |
+
|
393 |
+
#### Who are the annotators?
|
394 |
+
|
395 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
396 |
+
|
397 |
+
### Personal and Sensitive Information
|
398 |
+
|
399 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
400 |
+
|
401 |
+
## Considerations for Using the Data
|
402 |
+
|
403 |
+
### Social Impact of Dataset
|
404 |
+
|
405 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
406 |
+
|
407 |
+
### Discussion of Biases
|
408 |
+
|
409 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
410 |
+
|
411 |
+
### Other Known Limitations
|
412 |
+
|
413 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
414 |
+
|
415 |
+
## Additional Information
|
416 |
+
|
417 |
+
### Dataset Curators
|
418 |
+
|
419 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
420 |
+
|
421 |
+
### Licensing Information
|
422 |
+
|
423 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
424 |
+
|
425 |
+
### Citation Information
|
426 |
+
|
427 |
+
```
|
428 |
+
@inproceedings{gabor-etal-2018-semeval,
|
429 |
+
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
|
430 |
+
author = {G{\'a}bor, Kata and
|
431 |
+
Buscaldi, Davide and
|
432 |
+
Schumann, Anne-Kathrin and
|
433 |
+
QasemiZadeh, Behrang and
|
434 |
+
Zargayouna, Ha{\"\i}fa and
|
435 |
+
Charnois, Thierry},
|
436 |
+
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
|
437 |
+
month = jun,
|
438 |
+
year = "2018",
|
439 |
+
address = "New Orleans, Louisiana",
|
440 |
+
publisher = "Association for Computational Linguistics",
|
441 |
+
url = "https://aclanthology.org/S18-1111",
|
442 |
+
doi = "10.18653/v1/S18-1111",
|
443 |
+
pages = "679--688",
|
444 |
+
abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.",
|
445 |
+
}
|
446 |
+
```
|
447 |
+
### Contributions
|
448 |
+
|
449 |
+
Thanks to [@basvoju](https://github.com/basvoju) for adding this dataset.
|
450 |
+
|