metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 9119630
num_examples: 2755
- name: test
num_bytes: 1275997
num_examples: 380
download_size: 11308024
dataset_size: 10395627
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 1054
num_examples: 25
download_size: 3570
dataset_size: 1054
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
events
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
banking77 = Dataset.from_datasets("AutoIntent/events")
Source
This dataset is taken from knowledgator/events_classification_biotech
and formatted with our AutoIntent Library:
"""Convert events dataset to autointent internal format and scheme."""
from datasets import Dataset as HFDataset
from datasets import load_dataset
from autointent import Dataset
from autointent.schemas import Intent, Sample
# these classes contain too few sampls
names_to_remove = [
"partnerships & alliances",
"patent publication",
"subsidiary establishment",
"department establishment",
]
def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
"""Extract intent names and assign ids to them."""
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
for n in names_to_remove:
intent_names.remove(n)
return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, str | list[int] | None]:
"""Extract utterance and OHE label and drop the rest."""
res = {
"utterance": example["content"],
"label": [
int(intent.name in example["all_labels"]) for intent in intents_data
]
}
if sum(res["label"]) == 0:
res["label"] = None
return res
def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[Sample]:
"""Convert one split into desired format."""
events_split = events_split.map(
converting_mapping, remove_columns=events_split.features.keys(),
fn_kwargs={"intents_data": intents_data}
)
samples = []
for sample in events_split.to_list():
if sample["utterance"] is None:
continue
samples.append(sample)
mask = [sample["label"] is None for sample in samples]
n_oos_samples = sum(mask)
n_in_domain_samples = len(samples) - n_oos_samples
print(f"{n_oos_samples=}")
print(f"{n_in_domain_samples=}\n")
# actually there are too few oos samples to include them, so filter out
samples = list(filter(lambda sample: sample["label"] is not None, samples))
return [Sample(**sample) for sample in samples]
if __name__ == "__main__":
# `load_dataset` might not work
# fix is here: https://github.com/huggingface/datasets/issues/7248
events_dataset = load_dataset("knowledgator/events_classification_biotech", trust_remote_code=True)
intents_data = extract_intents_data(events_dataset)
train_samples = convert_events(events_dataset["train"], intents_data)
test_samples = convert_events(events_dataset["test"], intents_data)
events_converted = Dataset.from_dict(
{"train": train_samples, "test": test_samples, "intents": intents_data}
)