Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
German
Size:
1K - 10K
Tags:
Sentiment Analysis
License:
metadata
language:
- de
multilinguality:
- monolingual
license: cc-by-4.0
pretty_name: SB10k
task_categories:
- text-classification
tags:
- Sentiment Analysis
size_categories:
- 1K<n<10K
configs:
- config_name: default
sep: "\t"
column_names:
- ID
- Sentiment
- Text
- Normalized
- POS-Tags
- Dependency Labels
- additional Annotations
data_files:
- split: train
path: train.tsv
- split: test
path: test.tsv
- split: dev
path: dev.tsv
A Twitter corpus and benchmark resources for german sentiment analysis
Source
The data is a snapshot from the SB10k Dataset. The snapshot was made by Oliver Guhr.
Citation Information
@inproceedings{cieliebak2017twitter,
title={A twitter corpus and benchmark resources for german sentiment analysis},
author={Cieliebak, Mark and Deriu, Jan Milan and Egger, Dominic and Uzdilli, Fatih},
booktitle={5th International Workshop on Natural Language Processing for Social Media, Boston MA, USA, 11 December 2017},
pages={45--51},
year={2017},
organization={Association for Computational Linguistics}
}