|
--- |
|
language: |
|
- en |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- art |
|
- artistic |
|
- diffusers |
|
inference: true |
|
license: creativeml-openrail-m |
|
--- |
|
|
|
# Protogen_x3.4 |
|
|
|
Protogen was warm-started with [Stable Diffusion v1-5](https://huggingface.co./runwayml/stable-diffusion-v1-5) and fine-tuned on various high quality image datasets. |
|
Version 3.4 continued training from [ProtoGen v2.2](https://huggingface.co./darkstorm2150/Protogen_v2.2_Official_Release) with added photorealism. |
|
|
|
## Space |
|
|
|
We support a [Gradio](https://github.com/gradio-app/gradio) Web UI: |
|
[](https://huggingface.co./spaces/darkstorm2150/Stable-Diffusion-Protogen-webui) |
|
|
|
### CompVis |
|
|
|
[Download ProtoGen_X3.4.ckpt) (5.98GB)](https://huggingface.co./darkstorm2150/Protogen_x3.4_Official_Release/blob/main/ProtoGen_X3.4.ckpt) |
|
|
|
### 🧨 Diffusers |
|
|
|
This model can be used just like any other Stable Diffusion model. For more information, |
|
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co./docs/diffusers/api/pipelines/stable_diffusion). |
|
|
|
```python |
|
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler |
|
import torch |
|
|
|
prompt = ( |
|
"modelshoot style, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful artwork in the world, " |
|
"english medieval witch, black silk vale, pale skin, black silk robe, black cat, necromancy magic, medieval era, " |
|
"photorealistic painting by Ed Blinkey, Atey Ghailan, Studio Ghibli, by Jeremy Mann, Greg Manchess, Antonio Moro, trending on ArtStation, " |
|
"trending on CGSociety, Intricate, High Detail, Sharp focus, dramatic, photorealistic painting art by midjourney and greg rutkowski" |
|
) |
|
|
|
model_id = "darkstorm2150/Protogen_x3.4_Official_Release" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
|
|
image = pipe(prompt, num_inference_steps=25).images[0] |
|
|
|
image.save("./result.jpg") |
|
``` |
|
|
|
 |