|
--- |
|
base_model: Daemontatox/RA_Reasoner2.0 |
|
license: apache-2.0 |
|
datasets: |
|
- Daemontatox/Deepthinking-COT |
|
language: |
|
- en |
|
new_version: Daemontatox/RA_Reasoner2.0 |
|
library_name: transformers |
|
tags: |
|
- COT |
|
- Reasoning |
|
- text-generation-inference |
|
- llama-cpp |
|
- gguf-my-repo |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: RA_Reasoner2.0 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: wis-k/instruction-following-eval |
|
split: train |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 53.66 |
|
name: averaged accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: SaylorTwift/bbh |
|
split: test |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 43.07 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: lighteval/MATH-Hard |
|
split: test |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 22.89 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
split: train |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 9.96 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 7.18 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 37.26 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF |
|
This model was converted to GGUF format from [`Daemontatox/RA_Reasoner2.0`](https://huggingface.co./Daemontatox/RA_Reasoner2.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./Daemontatox/RA_Reasoner2.0) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048 |
|
``` |
|
|