darkc0de's picture
Upload README.md with huggingface_hub
cc93bb2 verified
---
base_model: Daemontatox/RA_Reasoner2.0
license: apache-2.0
datasets:
- Daemontatox/Deepthinking-COT
language:
- en
new_version: Daemontatox/RA_Reasoner2.0
library_name: transformers
tags:
- COT
- Reasoning
- text-generation-inference
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
model-index:
- name: RA_Reasoner2.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.66
name: averaged accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 43.07
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.89
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.96
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.18
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.26
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
---
# darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF
This model was converted to GGUF format from [`Daemontatox/RA_Reasoner2.0`](https://huggingface.co./Daemontatox/RA_Reasoner2.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./Daemontatox/RA_Reasoner2.0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048
```