BGE large Legal Spanish

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: es
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-5")
# Run inference
sentences = [
    'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
    '¿Qué se considera discriminación indirecta?',
    '¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5457
cosine_accuracy@3 0.7957
cosine_accuracy@5 0.8384
cosine_accuracy@10 0.8933
cosine_precision@1 0.5457
cosine_precision@3 0.2652
cosine_precision@5 0.1677
cosine_precision@10 0.0893
cosine_recall@1 0.5457
cosine_recall@3 0.7957
cosine_recall@5 0.8384
cosine_recall@10 0.8933
cosine_ndcg@10 0.7303
cosine_mrr@10 0.6768
cosine_map@100 0.6813

Information Retrieval

Metric Value
cosine_accuracy@1 0.5366
cosine_accuracy@3 0.8079
cosine_accuracy@5 0.8415
cosine_accuracy@10 0.8933
cosine_precision@1 0.5366
cosine_precision@3 0.2693
cosine_precision@5 0.1683
cosine_precision@10 0.0893
cosine_recall@1 0.5366
cosine_recall@3 0.8079
cosine_recall@5 0.8415
cosine_recall@10 0.8933
cosine_ndcg@10 0.7282
cosine_mrr@10 0.6737
cosine_map@100 0.6781

Information Retrieval

Metric Value
cosine_accuracy@1 0.5518
cosine_accuracy@3 0.8079
cosine_accuracy@5 0.8476
cosine_accuracy@10 0.8902
cosine_precision@1 0.5518
cosine_precision@3 0.2693
cosine_precision@5 0.1695
cosine_precision@10 0.089
cosine_recall@1 0.5518
cosine_recall@3 0.8079
cosine_recall@5 0.8476
cosine_recall@10 0.8902
cosine_ndcg@10 0.7326
cosine_mrr@10 0.6805
cosine_map@100 0.6848

Information Retrieval

Metric Value
cosine_accuracy@1 0.5518
cosine_accuracy@3 0.7835
cosine_accuracy@5 0.8384
cosine_accuracy@10 0.8841
cosine_precision@1 0.5518
cosine_precision@3 0.2612
cosine_precision@5 0.1677
cosine_precision@10 0.0884
cosine_recall@1 0.5518
cosine_recall@3 0.7835
cosine_recall@5 0.8384
cosine_recall@10 0.8841
cosine_ndcg@10 0.7255
cosine_mrr@10 0.6738
cosine_map@100 0.6784

Information Retrieval

Metric Value
cosine_accuracy@1 0.5244
cosine_accuracy@3 0.7683
cosine_accuracy@5 0.8201
cosine_accuracy@10 0.878
cosine_precision@1 0.5244
cosine_precision@3 0.2561
cosine_precision@5 0.164
cosine_precision@10 0.0878
cosine_recall@1 0.5244
cosine_recall@3 0.7683
cosine_recall@5 0.8201
cosine_recall@10 0.878
cosine_ndcg@10 0.709
cosine_mrr@10 0.6541
cosine_map@100 0.6583

Information Retrieval

Metric Value
cosine_accuracy@1 0.503
cosine_accuracy@3 0.7256
cosine_accuracy@5 0.7896
cosine_accuracy@10 0.8567
cosine_precision@1 0.503
cosine_precision@3 0.2419
cosine_precision@5 0.1579
cosine_precision@10 0.0857
cosine_recall@1 0.503
cosine_recall@3 0.7256
cosine_recall@5 0.7896
cosine_recall@10 0.8567
cosine_ndcg@10 0.6822
cosine_mrr@10 0.626
cosine_map@100 0.631

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 8
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4324 5 1.6729 - - - - - - -
0.8649 10 1.0155 - - - - - - -
0.9514 11 - 0.5773 0.6769 0.6526 0.6771 0.6782 0.5960 0.6752
1.2973 15 0.8661 - - - - - - -
1.7297 20 0.4311 - - - - - - -
1.9892 23 - 0.4496 0.6637 0.6494 0.6749 0.6729 0.6203 0.6656
2.1622 25 0.3745 - - - - - - -
2.5946 30 0.19 - - - - - - -
2.9405 34 - 0.4119 0.6714 0.6530 0.6777 0.6753 0.6162 0.6746
3.0270 35 0.1448 - - - - - - -
3.4595 40 0.0926 - - - - - - -
3.8919 45 0.0536 - - - - - - -
3.9784 46 - 0.3744 0.6852 0.6585 0.6778 0.6827 0.6273 0.6811
4.3243 50 0.0583 - - - - - - -
4.7568 55 0.0377 - - - - - - -
4.9297 57 - 0.3594 0.6829 0.6523 0.6786 0.6837 0.6302 0.6772
5.1892 60 0.0401 - - - - - - -
5.6216 65 0.0294 - - - - - - -
5.9676 69 - 0.3519 0.6831 0.6567 0.6774 0.6859 0.6329 0.6800
6.0541 70 0.0288 - - - - - - -
6.4865 75 0.0273 - - - - - - -
6.9189 80 0.0227 0.3513 0.6807 0.6551 0.6757 0.6832 0.6298 0.6781
7.3514 85 0.0223 - - - - - - -
7.6108 88 - 0.3523 0.6813 0.6583 0.6784 0.6848 0.631 0.6781
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
23
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dariolopez/bge-m3-es-legal-tmp-5

Base model

BAAI/bge-m3
Finetuned
(185)
this model

Evaluation results