dap305/Helsinki-finetuned-EuroParl-en-to-es
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on a subset of the EuroParl dataset. It achieves the following results on the validation set:
- Train Loss: 0.9863
- Validation Loss: 1.1352
- BLUE: 37.083
Intended uses & limitations
This model has been created for learning purposes at the MIARFID Automatic Translation course.
Training and evaluation data
This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish.
Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
1.2441 | 1.1487 | 0 |
1.0785 | 1.1351 | 1 |
0.9863 | 1.1352 | 2 |
Framework versions
- Transformers 4.37.0
- TensorFlow 2.13.0
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dap305/Helsinki-finetuned-EuroParl-en-to-es
Base model
Helsinki-NLP/opus-mt-en-es