|
--- |
|
license: mit |
|
license_link: https://huggingface.co./microsoft/Phi-3.5-MoE-instruct/resolve/main/LICENSE |
|
language: |
|
- multilingual |
|
pipeline_tag: text-generation |
|
tags: |
|
- nlp |
|
- code |
|
widget: |
|
- messages: |
|
- role: user |
|
content: Can you provide ways to eat combinations of bananas and dragonfruits? |
|
library_name: transformers |
|
--- |
|
|
|
> [!IMPORTANT] |
|
> This repository is a quantized version of the original model [`microsoft/Phi-3.5-MoE-instruct`](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct) which is the FP16 half-precision official version released by Microsoft. |
|
|
|
## Model Summary |
|
|
|
Phi-3.5-MoE is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available documents - with a focus on very high-quality, reasoning dense data. The model supports multilingual and comes with 128K context length (in tokens). The model underwent a rigorous enhancement process, incorporating supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. |
|
|
|
π‘ [Phi-3 Portal](https://azure.microsoft.com/en-us/products/phi-3) <br> |
|
π° [Phi-3 Microsoft Blog](https://aka.ms/phi3.5-techblog) <br> |
|
π [Phi-3 Technical Report](https://arxiv.org/abs/2404.14219) <br> |
|
π©βπ³ [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook) <br> |
|
π₯οΈ [Try It](https://aka.ms/try-phi3.5moe) <br> |
|
|
|
MoE references: |
|
π[Phi-3.5-MoE Blog](https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/announcing-the-availability-of-phi-3-5-moe-in-azure-ai-studio/ba-p/4256278) | π[GRIN MoE](https://huggingface.co./microsoft/GRIN-MoE) |
|
|
|
**Phi-3.5**: [[mini-instruct]](https://huggingface.co./microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co./microsoft/Phi-3.5-vision-instruct) |
|
|
|
## Running π |
|
|
|
### TGI |
|
|
|
```bash |
|
model=danieldk/Phi-3.5-MoE-instruct-AWQ-INT4 |
|
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run |
|
|
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ |
|
ghcr.io/huggingface/text-generation-inference:2.4.0 \ |
|
--model-id $model --num-shard 2 |
|
``` |
|
|
|
## Quantization Reproduction |
|
|
|
Soon (need to upstream an AutoAWQ patch). |