whisper-lt-finetune / README.md
daniel-rdt's picture
added additional files including readme
d407655
|
raw
history blame
2.15 kB
metadata
language:
  - lt
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-lt-finetune
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: 'null'
          split: None
          args: 'config: lt, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 28.115930505307517

whisper-lt-finetune

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3634
  • Wer: 28.1159

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.399 0.9 500 0.4877 49.1790
0.1925 1.8 1000 0.4019 39.1325
0.0734 2.7 1500 0.3989 37.5581
0.0324 3.6 2000 0.3947 32.9662
0.0053 5.4 3000 0.3708 29.2808
0.0007 7.19 4000 0.3634 28.1159

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2