damand2061/pfsa-id-med-indobert-nlu

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0536
  • Validation Loss: 0.3159
  • Validation F1: 0.8593
  • Validation Accuracy: 0.9287
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 19220, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Validation F1 Validation Accuracy Epoch
0.2859 0.2166 0.8202 0.9290 0
0.1802 0.2188 0.8487 0.9301 1
0.1260 0.2377 0.8558 0.9281 2
0.0807 0.2802 0.8588 0.9274 3
0.0536 0.3159 0.8593 0.9287 4

Framework versions

  • Transformers 4.44.0
  • TensorFlow 2.16.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for damand2061/pfsa-id-med-indobert-nlu

Finetuned
(29)
this model

Collection including damand2061/pfsa-id-med-indobert-nlu