xlnet-large-cased-airlines-news-multi-label

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2329
  • F1: 0.9001
  • Roc Auc: 0.6501
  • Hamming: 0.9145

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Hamming
No log 1.0 128 0.2866 0.8594 0.5 0.9041
No log 2.0 256 0.2520 0.8955 0.5943 0.9130
No log 3.0 384 0.2431 0.8984 0.6493 0.9130
0.3656 4.0 512 0.2384 0.8984 0.6622 0.9115
0.3656 5.0 640 0.2329 0.9001 0.6501 0.9145
0.3656 6.0 768 0.2353 0.9000 0.6699 0.9130
0.3656 7.0 896 0.2336 0.8959 0.6735 0.9071
0.2788 8.0 1024 0.2318 0.8957 0.6606 0.9086
0.2788 9.0 1152 0.2327 0.8961 0.6606 0.9086
0.2788 10.0 1280 0.2317 0.8975 0.6545 0.9100
0.2788 11.0 1408 0.2311 0.8975 0.6545 0.9100
0.2659 12.0 1536 0.2309 0.8982 0.6554 0.9115

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
98
Safetensors
Model size
362M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dahe827/xlnet-large-cased-airlines-news-multi-label

Finetuned
(26)
this model