metadata
license: mit
base_model: xlnet/xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlnet-base-cased-airlines-news-multi-label
results: []
xlnet-base-cased-airlines-news-multi-label
This model is a fine-tuned version of xlnet/xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2250
- F1: 0.9209
- Jaccard: 0.6829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 65
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Jaccard |
---|---|---|---|---|---|
No log | 1.0 | 57 | 0.3815 | 0.8283 | 0.4558 |
No log | 2.0 | 114 | 0.3186 | 0.8287 | 0.4602 |
No log | 3.0 | 171 | 0.2839 | 0.8781 | 0.5133 |
No log | 4.0 | 228 | 0.2660 | 0.8890 | 0.5457 |
No log | 5.0 | 285 | 0.2532 | 0.8996 | 0.5833 |
No log | 6.0 | 342 | 0.2471 | 0.8966 | 0.5745 |
No log | 7.0 | 399 | 0.2412 | 0.9066 | 0.6069 |
No log | 8.0 | 456 | 0.2393 | 0.9065 | 0.5981 |
0.323 | 9.0 | 513 | 0.2354 | 0.9043 | 0.6025 |
0.323 | 10.0 | 570 | 0.2340 | 0.9087 | 0.6077 |
0.323 | 11.0 | 627 | 0.2326 | 0.9122 | 0.6283 |
0.323 | 12.0 | 684 | 0.2305 | 0.9161 | 0.6401 |
0.323 | 13.0 | 741 | 0.2297 | 0.9113 | 0.6350 |
0.323 | 14.0 | 798 | 0.2284 | 0.9138 | 0.6416 |
0.323 | 15.0 | 855 | 0.2281 | 0.9130 | 0.6497 |
0.323 | 16.0 | 912 | 0.2248 | 0.9164 | 0.6527 |
0.323 | 17.0 | 969 | 0.2228 | 0.9166 | 0.6527 |
0.2463 | 18.0 | 1026 | 0.2232 | 0.9169 | 0.6586 |
0.2463 | 19.0 | 1083 | 0.2243 | 0.9162 | 0.6571 |
0.2463 | 20.0 | 1140 | 0.2236 | 0.9147 | 0.6519 |
0.2463 | 21.0 | 1197 | 0.2255 | 0.9203 | 0.6637 |
0.2463 | 22.0 | 1254 | 0.2261 | 0.9177 | 0.6556 |
0.2463 | 23.0 | 1311 | 0.2226 | 0.9169 | 0.6637 |
0.2463 | 24.0 | 1368 | 0.2226 | 0.9175 | 0.6718 |
0.2463 | 25.0 | 1425 | 0.2246 | 0.9147 | 0.6571 |
0.2463 | 26.0 | 1482 | 0.2240 | 0.9147 | 0.6637 |
0.2313 | 27.0 | 1539 | 0.2237 | 0.9164 | 0.6622 |
0.2313 | 28.0 | 1596 | 0.2235 | 0.9176 | 0.6711 |
0.2313 | 29.0 | 1653 | 0.2228 | 0.9154 | 0.6689 |
0.2313 | 30.0 | 1710 | 0.2220 | 0.9165 | 0.6748 |
0.2313 | 31.0 | 1767 | 0.2231 | 0.9168 | 0.6696 |
0.2313 | 32.0 | 1824 | 0.2231 | 0.9176 | 0.6718 |
0.2313 | 33.0 | 1881 | 0.2241 | 0.9166 | 0.6704 |
0.2313 | 34.0 | 1938 | 0.2224 | 0.9167 | 0.6704 |
0.2313 | 35.0 | 1995 | 0.2219 | 0.9168 | 0.6748 |
0.2248 | 36.0 | 2052 | 0.2250 | 0.9209 | 0.6829 |
0.2248 | 37.0 | 2109 | 0.2235 | 0.9139 | 0.6593 |
0.2248 | 38.0 | 2166 | 0.2226 | 0.9146 | 0.6659 |
0.2248 | 39.0 | 2223 | 0.2228 | 0.9176 | 0.6748 |
0.2248 | 40.0 | 2280 | 0.2227 | 0.9152 | 0.6637 |
0.2248 | 41.0 | 2337 | 0.2225 | 0.9151 | 0.6652 |
0.2248 | 42.0 | 2394 | 0.2224 | 0.9134 | 0.6593 |
0.2248 | 43.0 | 2451 | 0.2225 | 0.9175 | 0.6748 |
0.2201 | 44.0 | 2508 | 0.2219 | 0.9158 | 0.6637 |
0.2201 | 45.0 | 2565 | 0.2222 | 0.9151 | 0.6659 |
0.2201 | 46.0 | 2622 | 0.2211 | 0.9160 | 0.6681 |
0.2201 | 47.0 | 2679 | 0.2214 | 0.9167 | 0.6696 |
0.2201 | 48.0 | 2736 | 0.2218 | 0.9163 | 0.6681 |
0.2201 | 49.0 | 2793 | 0.2217 | 0.9146 | 0.6615 |
0.2201 | 50.0 | 2850 | 0.2216 | 0.9135 | 0.6593 |
0.2201 | 51.0 | 2907 | 0.2217 | 0.9174 | 0.6770 |
0.2201 | 52.0 | 2964 | 0.2219 | 0.9166 | 0.6755 |
0.2162 | 53.0 | 3021 | 0.2219 | 0.9165 | 0.6748 |
0.2162 | 54.0 | 3078 | 0.2214 | 0.9182 | 0.6814 |
0.2162 | 55.0 | 3135 | 0.2211 | 0.9165 | 0.6792 |
0.2162 | 56.0 | 3192 | 0.2211 | 0.9169 | 0.6748 |
0.2162 | 57.0 | 3249 | 0.2211 | 0.9149 | 0.6726 |
0.2162 | 58.0 | 3306 | 0.2209 | 0.9167 | 0.6814 |
0.2162 | 59.0 | 3363 | 0.2213 | 0.9167 | 0.6726 |
0.2162 | 60.0 | 3420 | 0.2215 | 0.9158 | 0.6726 |
0.2162 | 61.0 | 3477 | 0.2211 | 0.9150 | 0.6681 |
0.2157 | 62.0 | 3534 | 0.2211 | 0.9166 | 0.6748 |
0.2157 | 63.0 | 3591 | 0.2209 | 0.9157 | 0.6770 |
0.2157 | 64.0 | 3648 | 0.2209 | 0.9165 | 0.6748 |
0.2157 | 65.0 | 3705 | 0.2209 | 0.9157 | 0.6726 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1