metadata
base_model: microsoft/mpnet-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: mpnet-base-airlines-news-multi-label
results: []
mpnet-base-airlines-news-multi-label
This model is a fine-tuned version of microsoft/mpnet-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2601
- F1: 0.8921
- Roc Auc: 0.6253
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 65
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc |
---|---|---|---|---|---|
No log | 1.0 | 57 | 0.3852 | 0.8161 | 0.5 |
No log | 2.0 | 114 | 0.3612 | 0.8161 | 0.5 |
No log | 3.0 | 171 | 0.3569 | 0.8161 | 0.5 |
No log | 4.0 | 228 | 0.3515 | 0.8161 | 0.5 |
No log | 5.0 | 285 | 0.3453 | 0.8161 | 0.5 |
No log | 6.0 | 342 | 0.3403 | 0.8161 | 0.5 |
No log | 7.0 | 399 | 0.3345 | 0.8161 | 0.5 |
No log | 8.0 | 456 | 0.3292 | 0.8161 | 0.5 |
0.3585 | 9.0 | 513 | 0.3252 | 0.8161 | 0.5 |
0.3585 | 10.0 | 570 | 0.3175 | 0.8161 | 0.5 |
0.3585 | 11.0 | 627 | 0.3129 | 0.8161 | 0.5 |
0.3585 | 12.0 | 684 | 0.3076 | 0.8351 | 0.5029 |
0.3585 | 13.0 | 741 | 0.3024 | 0.8425 | 0.5109 |
0.3585 | 14.0 | 798 | 0.2995 | 0.8516 | 0.5163 |
0.3585 | 15.0 | 855 | 0.2953 | 0.8528 | 0.5221 |
0.3585 | 16.0 | 912 | 0.2904 | 0.8744 | 0.5426 |
0.3585 | 17.0 | 969 | 0.2875 | 0.8738 | 0.5451 |
0.2943 | 18.0 | 1026 | 0.2835 | 0.8833 | 0.5798 |
0.2943 | 19.0 | 1083 | 0.2811 | 0.8799 | 0.5710 |
0.2943 | 20.0 | 1140 | 0.2786 | 0.8815 | 0.5873 |
0.2943 | 21.0 | 1197 | 0.2761 | 0.8815 | 0.5873 |
0.2943 | 22.0 | 1254 | 0.2750 | 0.8838 | 0.5906 |
0.2943 | 23.0 | 1311 | 0.2705 | 0.8905 | 0.6194 |
0.2943 | 24.0 | 1368 | 0.2687 | 0.8911 | 0.6224 |
0.2943 | 25.0 | 1425 | 0.2674 | 0.8895 | 0.6165 |
0.2943 | 26.0 | 1482 | 0.2652 | 0.8911 | 0.6224 |
0.2666 | 27.0 | 1539 | 0.2642 | 0.8911 | 0.6224 |
0.2666 | 28.0 | 1596 | 0.2634 | 0.8903 | 0.6194 |
0.2666 | 29.0 | 1653 | 0.2612 | 0.8903 | 0.6194 |
0.2666 | 30.0 | 1710 | 0.2601 | 0.8921 | 0.6253 |
0.2666 | 31.0 | 1767 | 0.2583 | 0.8913 | 0.6328 |
0.2666 | 32.0 | 1824 | 0.2568 | 0.8864 | 0.6319 |
0.2666 | 33.0 | 1881 | 0.2563 | 0.8861 | 0.6319 |
0.2666 | 34.0 | 1938 | 0.2552 | 0.8869 | 0.6349 |
0.2666 | 35.0 | 1995 | 0.2544 | 0.8884 | 0.6378 |
0.2516 | 36.0 | 2052 | 0.2530 | 0.8875 | 0.6374 |
0.2516 | 37.0 | 2109 | 0.2523 | 0.8876 | 0.6374 |
0.2516 | 38.0 | 2166 | 0.2514 | 0.8889 | 0.6432 |
0.2516 | 39.0 | 2223 | 0.2504 | 0.8874 | 0.6453 |
0.2516 | 40.0 | 2280 | 0.2502 | 0.8892 | 0.6432 |
0.2516 | 41.0 | 2337 | 0.2495 | 0.8862 | 0.6419 |
0.2516 | 42.0 | 2394 | 0.2490 | 0.8867 | 0.6445 |
0.2516 | 43.0 | 2451 | 0.2491 | 0.8859 | 0.6365 |
0.2442 | 44.0 | 2508 | 0.2480 | 0.8906 | 0.6511 |
0.2442 | 45.0 | 2565 | 0.2476 | 0.8894 | 0.6457 |
0.2442 | 46.0 | 2622 | 0.2476 | 0.8888 | 0.6478 |
0.2442 | 47.0 | 2679 | 0.2474 | 0.8906 | 0.6511 |
0.2442 | 48.0 | 2736 | 0.2462 | 0.8890 | 0.6507 |
0.2442 | 49.0 | 2793 | 0.2461 | 0.8920 | 0.6545 |
0.2442 | 50.0 | 2850 | 0.2455 | 0.8894 | 0.6532 |
0.2442 | 51.0 | 2907 | 0.2457 | 0.8897 | 0.6507 |
0.2442 | 52.0 | 2964 | 0.2452 | 0.8894 | 0.6532 |
0.238 | 53.0 | 3021 | 0.2449 | 0.8903 | 0.6536 |
0.238 | 54.0 | 3078 | 0.2447 | 0.8894 | 0.6532 |
0.238 | 55.0 | 3135 | 0.2446 | 0.8894 | 0.6532 |
0.238 | 56.0 | 3192 | 0.2446 | 0.8904 | 0.6536 |
0.238 | 57.0 | 3249 | 0.2443 | 0.8894 | 0.6532 |
0.238 | 58.0 | 3306 | 0.2441 | 0.8894 | 0.6532 |
0.238 | 59.0 | 3363 | 0.2440 | 0.8911 | 0.6566 |
0.238 | 60.0 | 3420 | 0.2440 | 0.8911 | 0.6566 |
0.238 | 61.0 | 3477 | 0.2439 | 0.8903 | 0.6536 |
0.2353 | 62.0 | 3534 | 0.2437 | 0.8911 | 0.6566 |
0.2353 | 63.0 | 3591 | 0.2438 | 0.8911 | 0.6566 |
0.2353 | 64.0 | 3648 | 0.2437 | 0.8911 | 0.6566 |
0.2353 | 65.0 | 3705 | 0.2437 | 0.8911 | 0.6566 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1