|
--- |
|
license: bigcode-openrail-m |
|
base_model: bigcode/starcoderbase-7b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: starcoderbase7b_2048_context_length_lr_0.0005 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# starcoderbase7b_2048_context_length_lr_0.0005 |
|
|
|
This model is a fine-tuned version of [bigcode/starcoderbase-7b](https://huggingface.co./bigcode/starcoderbase-7b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0501 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 30 |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.6244 | 0.0125 | 25 | 0.5402 | |
|
| 1.0172 | 0.025 | 50 | 1.4486 | |
|
| 0.9991 | 0.0375 | 75 | 1.0535 | |
|
| 0.715 | 0.05 | 100 | 1.6262 | |
|
| 0.6957 | 0.0625 | 125 | 0.6796 | |
|
| 0.5182 | 0.075 | 150 | 0.6086 | |
|
| 0.497 | 0.0875 | 175 | 0.5938 | |
|
| 0.4611 | 0.1 | 200 | 0.6104 | |
|
| 0.4046 | 0.1125 | 225 | 0.5857 | |
|
| 0.3753 | 0.125 | 250 | 0.6633 | |
|
| 0.3517 | 0.1375 | 275 | 0.6479 | |
|
| 0.2758 | 0.15 | 300 | 0.5788 | |
|
| 0.2928 | 0.1625 | 325 | 0.6429 | |
|
| 0.2669 | 0.175 | 350 | 0.5874 | |
|
| 0.2608 | 0.1875 | 375 | 0.5497 | |
|
| 0.2049 | 0.2 | 400 | 0.6268 | |
|
| 0.2006 | 0.2125 | 425 | 0.6265 | |
|
| 0.197 | 0.225 | 450 | 0.6236 | |
|
| 0.177 | 0.2375 | 475 | 0.6124 | |
|
| 0.1774 | 0.25 | 500 | 0.6231 | |
|
| 0.1509 | 0.2625 | 525 | 0.5864 | |
|
| 0.1389 | 0.275 | 550 | 0.6161 | |
|
| 0.8679 | 0.2875 | 575 | 11.4657 | |
|
| 6.5575 | 0.3 | 600 | 6.4917 | |
|
| 6.0031 | 0.3125 | 625 | 5.5229 | |
|
| 5.1391 | 0.325 | 650 | 5.2191 | |
|
| 4.4917 | 0.3375 | 675 | 4.6562 | |
|
| 3.9199 | 0.35 | 700 | 4.2153 | |
|
| 3.855 | 0.3625 | 725 | 4.0902 | |
|
| 3.5441 | 0.375 | 750 | 4.0601 | |
|
| 3.3835 | 0.3875 | 775 | 3.8844 | |
|
| 3.1663 | 0.4 | 800 | 3.8223 | |
|
| 2.9285 | 0.4125 | 825 | 3.4541 | |
|
| 3.0088 | 0.425 | 850 | 3.5302 | |
|
| 2.9083 | 0.4375 | 875 | 3.3347 | |
|
| 2.8438 | 0.45 | 900 | 3.3962 | |
|
| 2.663 | 0.4625 | 925 | 3.0955 | |
|
| 2.5084 | 0.475 | 950 | 3.0454 | |
|
| 2.5818 | 0.4875 | 975 | 3.0131 | |
|
| 2.4068 | 0.5 | 1000 | 3.0179 | |
|
| 2.3994 | 0.5125 | 1025 | 2.8273 | |
|
| 2.1942 | 0.525 | 1050 | 2.7333 | |
|
| 2.1041 | 0.5375 | 1075 | 2.6163 | |
|
| 2.0861 | 0.55 | 1100 | 2.6006 | |
|
| 1.9868 | 0.5625 | 1125 | 2.5482 | |
|
| 1.9496 | 0.575 | 1150 | 2.6079 | |
|
| 1.8099 | 0.5875 | 1175 | 2.3777 | |
|
| 1.6454 | 0.6 | 1200 | 2.2547 | |
|
| 1.6484 | 0.6125 | 1225 | 2.3254 | |
|
| 1.5729 | 0.625 | 1250 | 2.2835 | |
|
| 1.5635 | 0.6375 | 1275 | 2.2167 | |
|
| 1.3961 | 0.65 | 1300 | 2.2751 | |
|
| 1.3495 | 0.6625 | 1325 | 2.1755 | |
|
| 1.3524 | 0.675 | 1350 | 2.1377 | |
|
| 1.3116 | 0.6875 | 1375 | 2.1407 | |
|
| 1.282 | 0.7 | 1400 | 2.0955 | |
|
| 1.114 | 0.7125 | 1425 | 2.0334 | |
|
| 1.0985 | 0.725 | 1450 | 2.0133 | |
|
| 1.1216 | 0.7375 | 1475 | 2.0139 | |
|
| 1.0544 | 0.75 | 1500 | 2.0464 | |
|
| 1.0221 | 0.7625 | 1525 | 1.9984 | |
|
| 0.9368 | 0.775 | 1550 | 2.0069 | |
|
| 0.8973 | 0.7875 | 1575 | 1.9595 | |
|
| 0.9332 | 0.8 | 1600 | 1.9372 | |
|
| 0.9227 | 0.8125 | 1625 | 1.9910 | |
|
| 0.8507 | 0.825 | 1650 | 2.0251 | |
|
| 0.8242 | 0.8375 | 1675 | 1.9892 | |
|
| 0.7571 | 0.85 | 1700 | 2.0327 | |
|
| 0.7519 | 0.8625 | 1725 | 1.9949 | |
|
| 0.7209 | 0.875 | 1750 | 2.0050 | |
|
| 0.7315 | 0.8875 | 1775 | 2.0076 | |
|
| 0.77 | 0.9 | 1800 | 2.0315 | |
|
| 0.7719 | 0.9125 | 1825 | 2.0241 | |
|
| 0.681 | 0.925 | 1850 | 2.0440 | |
|
| 0.7371 | 0.9375 | 1875 | 2.0380 | |
|
| 0.6823 | 0.95 | 1900 | 2.0392 | |
|
| 0.6891 | 0.9625 | 1925 | 2.0563 | |
|
| 0.7266 | 0.975 | 1950 | 2.0511 | |
|
| 0.6888 | 0.9875 | 1975 | 2.0501 | |
|
| 0.6663 | 1.0 | 2000 | 2.0501 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0a0+07cecf4168.nv24.05 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|