metadata
language:
- en
- vi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: meta-llama/Meta-Llama-3-8B-Instruct
pipeline_tag: text-generation
Uploaded model
- Developed by: dad1909 (Huynh Dac Tan Dat)
- License: RMIT
Model Card for dad1909/CyberSentinel
This repo contains 4-bit quantized (using bitsandbytes) model of Meta's Meta-Llama-3-8B-Instruct
Model Details
- ** Model creator: Meta
- ** Original model: Meta-Llama-3-8B-Instruct
Code running in google colab using text_streamer (Recommend):
%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes
# Uninstall and reinstall xformers with CUDA support
!pip uninstall -y xformers
!pip install xformers[cuda]
from unsloth import FastLanguageModel
import torch
from transformers import TextStreamer
max_seq_length = 1028 # Choose any! We auto support RoPE Scaling internally!
dtype = torch.float16 # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="dad1909/CyberSentinel",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit
)
alpaca_prompt = """Below is a code snippet. Identify the line of code that is vulnerable and describe the type of software vulnerability.
### Code Snippet:
{}
### Vulnerability Description:
{}"""
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"import sqlite3\n\ndef create_table():\n conn = sqlite3.connect(':memory:')\n c = conn.cursor()\n c.execute('''CREATE TABLE users (id INTEGER PRIMARY KEY, username TEXT, password TEXT)''')\n c.execute(\"INSERT INTO users (username, password) VALUES ('user1', 'pass1')\")\n c.execute(\"INSERT INTO users (username, password) VALUES ('user2', 'pass2')\")\n conn.commit()\n return conn\n\ndef vulnerable_query(conn, username):\n c = conn.cursor()\n query = f\"SELECT * FROM users WHERE username = '{username}'\"\n print(f\"Executing query: {query}\")\n c.execute(query)\n return c.fetchall()\n\n# Create a database and a table\nconn = create_table()\n\n# Simulate a user input with SQL injection\nuser_input = \"' OR '1'='1\"\nresults = vulnerable_query(conn, user_input)\n\n# Print the results\nprint(\"Results of the query:\")\nfor row in results:\n print(row)\n\n# Close the connection\nconn.close()\n", # instruction
"",
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1028)
Install using Transformers pipeline and Transformers AutoModelForCausalLM
!pip install transformers
!pip install torch
!pip install accelerate
Transformers pipeline and
import transformers
import torch
model_id = "dad1909/CyberSentinel"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a chatbot who always responds for detect software vulnerable code!"},
{"role": "user", "content": "what is Buffer overflow?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators
)
print(outputs[0]["generated_text"][len(prompt):])
Transformers AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "dad1909/CyberSentinel"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a chatbot who always responds for detect software vulnerable code!"},
{"role": "user", "content": "what is Buffer overflow?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
How to use
This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original llama3
codebase.
Use with transformers
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the generate()
function. Let's see examples of both.
Training Data
Overview cyberAI is pretrained from dad1909/DSV that data related to software vulnerability codes. The fine-tuning data includes publicly available instruction and output datasets.
Data Freshness The pretraining data is continuously updated with new vulnerability codes.