beit-base-patch16-224_rice-disease-02_111724

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1321
  • Accuracy: 0.9574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3364 1.0 845 0.5174 0.8430
0.344 2.0 1690 0.2503 0.9222
0.2076 3.0 2535 0.1983 0.9375
0.1649 4.0 3380 0.1730 0.9468
0.1443 5.0 4225 0.1581 0.9528
0.1261 6.0 5070 0.1544 0.9554
0.1166 7.0 5915 0.1498 0.9528
0.1097 8.0 6760 0.1479 0.9554
0.1017 9.0 7605 0.1477 0.9501
0.1016 10.0 8450 0.1382 0.9561
0.0946 11.0 9295 0.1362 0.9574
0.0934 12.0 10140 0.1330 0.9587
0.0903 13.0 10985 0.1330 0.9548
0.0863 14.0 11830 0.1323 0.9568
0.0877 15.0 12675 0.1321 0.9574

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cvmil/beit-base-patch16-224_rice-disease-02

Finetuned
(297)
this model