metadata
tags:
- generated_from_keras_callback
- AVeriTec
model-index:
- name: deberta-v3-large-AVeriTeC-nli
results:
- task:
type: text-classification
dataset:
name: chenxwh/AVeriTeC
type: chenxwh/AVeriTeC
metrics:
- name: dev macro F1 score
type: macro F1 score
value: 0.71
- name: dev macro recall
type: macro recall
value: 0.73
- name: dev macro precision
type: macro precision
value: 0.71
- name: dev accuracy
type: accuracy
value: 0.82
license: mit
language:
- en
library_name: transformers
pipeline_tag: text-classification
base_model: microsoft/deberta-v3-large
datasets:
- chenxwh/AVeriTeC
deberta-v3-large-AVeriTeC-nli
This model was finetuned from microsoft/deberta-v3-large on an AVeriTec dataset. It achieves the following results on the evaluation set:
Intended uses & limitations
This model is intended for usage in a pipeline for open-domain fact-checking task.
Training and evaluation data
See chenxwh/AVeriTeC
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: adamw_torch
- training_precision: float16
- learning_rate: 1e-5
- per_device_train_batch_size: 32
- num_train_epochs: 10
- weight_decay: 0.01
- load_best_model_at_end: True #early stopping!
- warmup_ratio: 0.06
Training results
Framework versions
- Transformers 4.43.0
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.19.1