whisper-medium-nyagen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2561
  • Wer: 0.1952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1602 0.5326 200 0.5182 0.3747
0.5456 1.0639 400 0.3445 0.2552
0.5516 1.5965 600 0.2903 0.2413
0.224 2.1278 800 0.2817 0.2384
0.2413 2.6605 1000 0.2561 0.1952
0.1036 3.1917 1200 0.2583 0.1904
0.1135 3.7244 1400 0.2637 0.2120
0.057 4.2557 1600 0.2731 0.2097

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
24
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-nyagen-combined-model

Finetuned
(539)
this model

Evaluation results