whisper-medium-bigcgen-combined-15hrs-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5868
  • Wer: 0.4709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7191 0.2035 200 0.9003 0.6238
3.3861 0.4070 400 0.7572 0.5558
2.9296 0.6105 600 0.7156 0.5460
2.8891 0.8140 800 0.6542 0.5140
2.0307 1.0183 1000 0.6246 0.5156
2.277 1.2218 1200 0.6171 0.5276
1.8914 1.4253 1400 0.6088 0.4787
1.8974 1.6288 1600 0.5974 0.4545
1.7759 1.8324 1800 0.5868 0.4709
1.0256 2.0366 2000 0.5886 0.4393
1.2131 2.2401 2200 0.6019 0.4494
0.996 2.4437 2400 0.5997 0.4421

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-bigcgen-combined-15hrs-model

Finetuned
(548)
this model

Evaluation results