whisper-medium-bemgen-100f50m-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4354
  • Wer: 0.3898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1512 0.2641 200 0.8282 0.6534
2.4008 0.5282 400 0.6203 0.5097
2.2459 0.7923 600 0.5506 0.4644
1.3319 1.0555 800 0.5029 0.4017
1.5588 1.3196 1000 0.4675 0.3897
1.2908 1.5837 1200 0.4534 0.3727
1.4258 1.8478 1400 0.4354 0.3898
0.6383 2.1109 1600 0.4480 0.3600
0.6079 2.3750 1800 0.4444 0.3482
0.5709 2.6392 2000 0.4367 0.3405

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for csikasote/whisper-medium-bemgen-100f50m-model

Finetuned
(567)
this model

Evaluation results