csikasote's picture
Update metadata with huggingface_hub
7247e0b verified
metadata
base_model: openai/whisper-large-v3
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-large-v3-genbed-m-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: genbed
          type: genbed
          config: en
          split: test
        metrics:
          - type: wer
            value: 37.19
            name: WER

whisper-large-v3-genbed-m-model

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7479
  • Wer: 36.9425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4385 0.6596 250 0.7026 57.3435
0.578 1.3193 500 0.6312 47.4271
0.499 1.9789 750 0.5735 43.2676
0.2829 2.6385 1000 0.5949 41.0913
0.2304 3.2982 1250 0.6149 40.5660
0.1672 3.9578 1500 0.5645 38.5399
0.1019 4.6174 1750 0.6265 42.0026
0.0911 5.2770 2000 0.6534 38.5399
0.0713 5.9367 2250 0.6533 38.1754
0.0545 6.5963 2500 0.6577 37.7466
0.0497 7.2559 2750 0.6626 39.3117
0.0425 7.9156 3000 0.6901 37.2642
0.0374 8.5752 3250 0.6919 38.6256
0.0312 9.2348 3500 0.7093 37.2856
0.0302 9.8945 3750 0.7260 35.7740
0.0233 10.5541 4000 0.7181 36.5780
0.0262 11.2137 4250 0.7352 35.5703
0.0241 11.8734 4500 0.7340 36.4172
0.0198 12.5330 4750 0.7463 36.8461
0.0201 13.1926 5000 0.7479 36.9425

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1