w2v-bert-bem-natbed-combined-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6289
  • Wer: 0.6078

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0078 0.5006 200 0.9815 0.8201
0.8769 1.0013 400 0.9823 1.0433
0.805 1.5019 600 0.8306 0.8606
0.8141 2.0025 800 0.7548 0.7196
0.7132 2.5031 1000 0.7485 0.6932
0.7058 3.0038 1200 0.7280 0.6917
0.6563 3.5044 1400 0.7046 0.7045
0.6232 4.0050 1600 0.7186 0.7409
0.6093 4.5056 1800 0.7048 0.6434
0.5767 5.0063 2000 0.6521 0.6474
0.5628 5.5069 2200 0.6322 0.6018
0.5569 6.0075 2400 0.6289 0.6078
0.5156 6.5081 2600 0.6504 0.6374
0.5074 7.0088 2800 0.6638 0.6222
0.4906 7.5094 3000 0.6744 0.5884

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
3
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/w2v-bert-bem-natbed-combined-model

Finetuned
(240)
this model