mms-zeroshot-300m-natbed-combined-model

This model is a fine-tuned version of mms-meta/mms-zeroshot-300m on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5928
  • Wer: 0.5278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.2503 200 2.6612 1.0
No log 0.5006 400 0.7787 0.6601
3.3034 0.7509 600 0.7196 0.6194
3.3034 1.0013 800 0.6961 0.5966
0.8261 1.2516 1000 0.6695 0.5762
0.8261 1.5019 1200 0.6314 0.5728
0.8261 1.7522 1400 0.6478 0.5575
0.7513 2.0025 1600 0.6374 0.5554
0.7513 2.2528 1800 0.6033 0.5484
0.7173 2.5031 2000 0.6270 0.5419
0.7173 2.7534 2200 0.6057 0.5433
0.7173 3.0038 2400 0.5928 0.5278
0.7092 3.2541 2600 0.5980 0.5321
0.7092 3.5044 2800 0.5976 0.5261
0.696 3.7547 3000 0.6369 0.5248

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
6
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/mms-zeroshot-300m-natbed-combined-model

Finetuned
(10)
this model