mms-1b-bemgen-100f50m-model
This model is a fine-tuned version of facebook/mms-1b-all on the BEMGEN - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2051
- Wer: 0.3518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
13.3814 | 0.1374 | 100 | 0.6632 | 0.7196 |
1.0155 | 0.2747 | 200 | 0.3021 | 0.4662 |
0.8042 | 0.4121 | 300 | 0.2792 | 0.4686 |
0.7806 | 0.5495 | 400 | 0.2685 | 0.4386 |
0.7457 | 0.6868 | 500 | 0.2673 | 0.4402 |
0.7131 | 0.8242 | 600 | 0.2641 | 0.4238 |
0.7382 | 0.9615 | 700 | 0.2537 | 0.4253 |
0.6811 | 1.0989 | 800 | 0.2501 | 0.4225 |
0.6988 | 1.2363 | 900 | 0.2492 | 0.4222 |
0.6857 | 1.3736 | 1000 | 0.2475 | 0.4058 |
0.6711 | 1.5110 | 1100 | 0.2455 | 0.4072 |
0.6802 | 1.6484 | 1200 | 0.2403 | 0.4068 |
0.6962 | 1.7857 | 1300 | 0.2387 | 0.4112 |
0.6656 | 1.9231 | 1400 | 0.2400 | 0.4154 |
0.6643 | 2.0604 | 1500 | 0.2355 | 0.4047 |
0.6502 | 2.1978 | 1600 | 0.2405 | 0.4032 |
0.6309 | 2.3352 | 1700 | 0.2428 | 0.4530 |
0.6572 | 2.4725 | 1800 | 0.2320 | 0.3956 |
0.6026 | 2.6099 | 1900 | 0.2353 | 0.3874 |
0.6578 | 2.7473 | 2000 | 0.2298 | 0.4008 |
0.6493 | 2.8846 | 2100 | 0.2284 | 0.3864 |
0.609 | 3.0220 | 2200 | 0.2280 | 0.3858 |
0.611 | 3.1593 | 2300 | 0.2259 | 0.3883 |
0.5993 | 3.2967 | 2400 | 0.2237 | 0.3832 |
0.5881 | 3.4341 | 2500 | 0.2230 | 0.3792 |
0.6212 | 3.5714 | 2600 | 0.2214 | 0.3810 |
0.5731 | 3.7088 | 2700 | 0.2220 | 0.3689 |
0.6249 | 3.8462 | 2800 | 0.2204 | 0.3695 |
0.6344 | 3.9835 | 2900 | 0.2187 | 0.3677 |
0.5931 | 4.1209 | 3000 | 0.2188 | 0.3745 |
0.5805 | 4.2582 | 3100 | 0.2160 | 0.3761 |
0.606 | 4.3956 | 3200 | 0.2159 | 0.3803 |
0.6137 | 4.5330 | 3300 | 0.2164 | 0.3894 |
0.5491 | 4.6703 | 3400 | 0.2146 | 0.3700 |
0.5659 | 4.8077 | 3500 | 0.2161 | 0.3596 |
0.5802 | 4.9451 | 3600 | 0.2135 | 0.3657 |
0.5921 | 5.0824 | 3700 | 0.2128 | 0.3582 |
0.5528 | 5.2198 | 3800 | 0.2107 | 0.3625 |
0.5584 | 5.3571 | 3900 | 0.2152 | 0.3878 |
0.5712 | 5.4945 | 4000 | 0.2129 | 0.3556 |
0.5863 | 5.6319 | 4100 | 0.2103 | 0.3536 |
0.5404 | 5.7692 | 4200 | 0.2110 | 0.3559 |
0.5715 | 5.9066 | 4300 | 0.2116 | 0.3541 |
0.5688 | 6.0440 | 4400 | 0.2137 | 0.3640 |
0.5249 | 6.1813 | 4500 | 0.2098 | 0.3647 |
0.5489 | 6.3187 | 4600 | 0.2098 | 0.3515 |
0.5325 | 6.4560 | 4700 | 0.2080 | 0.3563 |
0.5517 | 6.5934 | 4800 | 0.2105 | 0.3630 |
0.5392 | 6.7308 | 4900 | 0.2102 | 0.3651 |
0.5513 | 6.8681 | 5000 | 0.2052 | 0.3440 |
0.5526 | 7.0055 | 5100 | 0.2062 | 0.3403 |
0.5306 | 7.1429 | 5200 | 0.2069 | 0.3659 |
0.5021 | 7.2802 | 5300 | 0.2065 | 0.3520 |
0.5706 | 7.4176 | 5400 | 0.2042 | 0.3515 |
0.5223 | 7.5549 | 5500 | 0.2029 | 0.3430 |
0.5516 | 7.6923 | 5600 | 0.2032 | 0.3436 |
0.5249 | 7.8297 | 5700 | 0.2068 | 0.3553 |
0.5028 | 7.9670 | 5800 | 0.2047 | 0.3511 |
0.4719 | 8.1044 | 5900 | 0.2051 | 0.3515 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for csikasote/mms-1b-bemgen-100f50m-model
Base model
facebook/mms-1b-all