|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sucx3_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: histbert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: sucx3_ner |
|
type: sucx3_ner |
|
config: simple_cased |
|
split: validation |
|
args: simple_cased |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8784308810627898 |
|
- name: Recall |
|
type: recall |
|
value: 0.9261363636363636 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9016530520357625 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.992218705252845 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# histbert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [Riksarkivet/bert-base-cased-swe-historical](https://huggingface.co./Riksarkivet/bert-base-cased-swe-historical) on the sucx3_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0495 |
|
- Precision: 0.8784 |
|
- Recall: 0.9261 |
|
- F1: 0.9017 |
|
- Accuracy: 0.9922 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0403 | 1.0 | 5391 | 0.0316 | 0.8496 | 0.8866 | 0.8677 | 0.9903 | |
|
| 0.0199 | 2.0 | 10782 | 0.0308 | 0.8814 | 0.9034 | 0.8923 | 0.9915 | |
|
| 0.0173 | 3.0 | 16173 | 0.0372 | 0.8698 | 0.9197 | 0.8940 | 0.9913 | |
|
| 0.0066 | 4.0 | 21564 | 0.0397 | 0.8783 | 0.9239 | 0.9005 | 0.9921 | |
|
| 0.0029 | 5.0 | 26955 | 0.0454 | 0.8855 | 0.9181 | 0.9015 | 0.9923 | |
|
| 0.0035 | 6.0 | 32346 | 0.0454 | 0.8834 | 0.9211 | 0.9019 | 0.9922 | |
|
| 0.0009 | 7.0 | 37737 | 0.0495 | 0.8784 | 0.9261 | 0.9017 | 0.9922 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|