TenaliAI-FinTech-v1 / README.md
credentek's picture
End of training
95dfb6f verified
|
raw
history blame
2.57 kB
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: TenaliAI-FinTech-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TenaliAI-FinTech-v1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8354
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3149 | 1.0 | 3805 | 1.9892 |
| 1.2456 | 2.0 | 7610 | 1.1899 |
| 0.9588 | 3.0 | 11415 | 0.9585 |
| 0.8487 | 4.0 | 15220 | 0.8958 |
| 0.7874 | 5.0 | 19025 | 0.8803 |
| 0.7452 | 6.0 | 22830 | 0.8615 |
| 0.703 | 7.0 | 26635 | 0.8594 |
| 0.706 | 8.0 | 30440 | 0.8418 |
| 0.681 | 9.0 | 34245 | 0.8509 |
| 0.6653 | 10.0 | 38050 | 0.8445 |
| 0.6728 | 11.0 | 41855 | 0.8354 |
| 0.6226 | 12.0 | 45660 | 0.8583 |
| 0.6599 | 13.0 | 49465 | 0.8481 |
| 0.6375 | 14.0 | 53270 | 0.8592 |
| 0.64 | 15.0 | 57075 | 0.8599 |
| 0.644 | 16.0 | 60880 | 0.8704 |
| 0.5926 | 17.0 | 64685 | 0.8955 |
| 0.6346 | 18.0 | 68490 | 0.8906 |
| 0.6127 | 19.0 | 72295 | 0.9010 |
| 0.6051 | 20.0 | 76100 | 0.8887 |
| 0.6311 | 21.0 | 79905 | 0.8976 |
| 0.6386 | 22.0 | 83710 | 0.8875 |
| 0.606 | 23.0 | 87515 | 0.8969 |
| 0.6063 | 24.0 | 91320 | 0.9097 |
| 0.595 | 25.0 | 95125 | 0.9169 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1