solar-kor-resume
Update @ 2024.05.27: First release of Ocelot-Ko-self-instruction-10.8B-v1.0
This model card corresponds to the 10.8B Instruct version of the Solar-Ko model.
The train wad done on A100-80GB
Resources and Technical Documentation:
Citation
@misc {cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0,
author = { {frcp, nebchi, pepperonipizza97} },
title = { solar-kor-resume},
year = 2024,
url = { https://huggingface.co./cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0 },
publisher = { Hugging Face }
}
Model Developers: frcp, nebchi, pepperonipizza97
Model Information
Resume Proofreading and evaluation of inputs and outputs.
Description
It has been trained with a large amount of Korean tokens compared to other LLMs, enabling it to generate high-quality Korean text.
Model Architecture Solar is an auto-regressive language model that is scaled using the DUS method.
*You can find dataset list here: https://huggingface.co./datasets/cpm-ai/gpt-self-introduction-all
Inputs and outputs
- Input: Text string, such as a question, a prompt, or a document to be Proofreaded.
- Output: Generated Korea text in response to the input, such as an answer to a question, or a evaluation of a resume.
Running the model on a single / multi GPU
# pip install accelerate, flash_attn, sentencepiece
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0")
model = AutoModelForCausalLM.from_pretrained("cpm-ai/Ocelot-Ko-self-instruction-10.8B-v1.0", device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=4096, streamer=streamer)
text = λλ μκΈ°μκ°μ 첨μ μ λ¬Έκ°μΌ.
μ£Όμ΄μ§ μκΈ°μκ°μλ₯Ό 첨μν΄μ λ€μ μμ±ν΄μΌν΄.
μΆλ ₯νμμ λ€μμ μ§μΌμΌν΄.
[첨μ]
λ€μμ΄ μκΈ°μκ°μμΌ :
[μ λ μ΄λ¦° μμ λΆν° μλ²½μ£Όμμ μΈ μ±κ²©μ κ°μ§κ³ μμμ΅λλ€. μ΄λ‘ μΈν΄ νμ μμ μ λ₯λ ₯μ λν λΆμκ°μ λλΌλ©° κ³Όλν μ€νΈλ μ€λ₯Ό λ°μμμ΅λλ€. νμ°½ μμ μλ κ³Όμ λ νλ‘μ νΈλ₯Ό μλ²½νκ² λ§λ¬΄λ¦¬νμ§ λͺ»νλ©΄ μμ‘΄κ°μ΄ ν¬κ² νλ€λ Έμ΅λλ€. μ€νκ΅ μμ μλ ν κ°μ§ λ¬Έμ μ λ무 μ€λ μκ°μ ν¬μνμ¬ λ€λ₯Έ νμ΅ κΈ°νλ₯Ό λμΉκΈ°λ νμ΅λλ€. μ΄λ¬ν κ²½νλ€μ μ μκ² μλ²½ν¨μ μΆκ΅¬νλ κ²μ΄ μ’
μ’
νμ€μ λΆμ ν©νλ€λ κ²μ κΉ¨λ¬κ² νμ΅λλ€.
κ³ λ±νκ΅μ λνκ΅μ μ§ννλ©΄μλ μ΄λ¬ν μλ²½μ£Όμμ μΈ μ±κ²©μ 극볡νκΈ° μν΄ λ
Έλ ₯νμ΅λλ€. νμ§λ§ μ¬μ ν μ€ν¨λ₯Ό λ°μλ€μ΄λ κ²μ΄ μ΄λ ΅κ³ , μμ μ νκ³λ₯Ό μΈμ νλ κ²μ΄ μ΄λ €μ μ΅λλ€. μ΄λ¬ν κ³Όμ μ ν΅ν΄ μλ²½ν¨μ λν κ°λ°μ΄ μ μ μ±μ₯κ³Όμ μ μ μ½νλ μμΈμ΄ λμμμ κΉ¨λ¬μμ΅λλ€.]"""
messages = [
{
"role": "user",
"content": "{}".format(text)
}
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(
prompt,
temperature=0.2,
add_special_tokens=True
)
print(outputs[0]["generated_text"][len(prompt):])
results
[첨μ]
μ΄λ¦° μμ λΆν° μ λ μλ²½ν κ²°κ³Όλ₯Ό μΆκ΅¬νλ©° μ€μ€λ‘λ₯Ό μλ°ν΄μ¨ μ±κ²©μ΄μμ΅λλ€. μ΄λ νμ
κ³Ό κ΄λ ¨λ μ€νΈλ μ€λ‘ μ΄μ΄μ Έ, κ³Όμ λ₯Ό μμνλλΌλ λ§μ‘±λ³΄λ€λ λΆλ§μ‘±μ κ°μ μ΄ λ μ»Έλ μκΈ°μμ΅λλ€. νΉν μ€νκ΅ λ ν λ¬Έμ λ₯Ό ν΄κ²°νκΈ° μν΄ μ§λμΉκ² μ€λ«λμ 맀λ¬λ € κ²°κ΅ μ€μν μκΈ°λ₯Ό λμΉ κ²½νμ μ μ±μ₯μ ν° μν₯μ λ―Έμ³€μ΅λλ€. μ΄ κ³Όμ μμ μλ²½μ£Όμλ₯Ό μΆκ΅¬νλ κ²μ΄ νμ€μ μ΄μ§ μμ μ μλ€λ μ¬μ€μ κΉ¨λ«κΈ° μμνμ΅λλ€.
κ³ λ±νκ΅μ λνμμλ μ΄λ¬ν μ±ν₯μ κ°μ νκ³ μ λ€μν λ
Έλ ₯μ κΈ°μΈμμ΅λλ€. μλ₯Ό λ€μ΄, λͺ©νλ₯Ό μΈλΆννκ³ λ¨κ³λ³λ‘ μ κ·Όνλ©΄μ μ±μ·¨κ°κ³Ό μμ κ°μ ν€μ°κΈ° μν΄ λ
Έλ ₯νμ΅λλ€. λν, ν νλ‘μ νΈμμ μν μ λΆλ΄νκ³ νλ ₯ν¨μΌλ‘μ¨ κ°μΈμ νκ³λ³΄λ€ μ 체 μ±κ³Όλ₯Ό μ°μ μνλ λ²μ λ°°μ μ΅λλ€. λΉλ‘ μμ§ μλ²½ν¨μ΄λΌλ κ΅΄λ λ‘λΆν° μμ ν μμ λ‘μμ§μ§λ λͺ»νμ§λ§, μ΄λ₯Ό 극볡νκ³ μ±μ₯ν μ μλ λ°©λ²μ μ°Ύμλ€λ μ μμ μλΆμ¬μ λλλλ€.
Evaluation Results - LogicKor
Model | κΈμ°κΈ° | μ΄ν΄ | λ¬Έλ² |
---|---|---|---|
HyperClovaX | 8.50 | 9.50 | 8.50 |
solar-1-mini-chat | 8.50 | 7.00 | 5.21 |
allganize/Llama-3-Alpha-Ko-8B-Instruct | 8.50 | 8.35 | 4.92 |
Synatra-kiqu-7B | 4.42 | 5.71 | 4.50 |
Ocelot-ko-10.8B | 8.57 | 7.00 | 6.57 |
Evaluation Results - Kobest
λͺ¨λΈ λͺ μΉ | Average n=0 n=5 |
HellaSwag n=0 n=5 |
COPA n=0 n=5 |
BooIQ n=0 n=5 |
---|---|---|---|---|
KoGPT | 58.2 63.7 | 55.9 58.3 | 73.5 72.9 | 45.1 59.8 |
Polyglot-ko-13B | 62.4 68.2 | 59.5 63.1 | 79.4 81.1 | 48.2 60.4 |
LLaMA 2-13B | 45.2 60.5 | 41.3 44.0 | 59.3 63.8 | 34.9 73.8 |
Baichuan 2-13B | 52.7 53.9 | 39.2 39.6 | 60.6 60.6 | 58.4 61.5 |
QWEN-14B | 47.8 66.4 | 45.3 46.8 | 64.9 68.9 | 33.4 83.5 |
Orion-14B-Chat | 68.8 73.2 | 47.0 49.6 | 77.7 79.4 | 81.6 90.7 |
Ocelot-ko-10.8B | 72.5 75.9 | 50.0 51.4 | 75.8 82.5 | 91.7 93.8 |
Software
Training was done using QLoRA
- Downloads last month
- 407
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.