|
--- |
|
|
|
base_model: microsoft/phi-4 |
|
|
|
--- |
|
This is a quantization of the [phi-4](https://huggingface.co./microsoft/phi-4). |
|
|
|
The phi-4 model is a cutting-edge open-source LLM developed using a diverse mix of synthetic datasets, curated public domain web content, and acquired academic resources, including books and Q&A datasets. This deliberate data selection ensures the training of compact yet highly capable models with an emphasis on quality and advanced reasoning. To further enhance its performance, phi-4 underwent a rigorous alignment process that included supervised fine-tuning and direct preference optimization, resulting in precise instruction adherence and robust safety measures. |
|
## Evaluations |
|
This model provides an accuracy recovery of 99.68%. |
|
|
|
| __English__ | __[phi-4](https://huggingface.co./microsoft/phi-4)__ | __[phi-4-FP8-Dynamic (this)](https://huggingface.co./cortecs/phi-4-FP8-Dynamic)__ | |
|
|:--------------|:------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| Avg. | 70.75 | 70.7 | |
|
| Arc | 68.7 | 68.7 | |
|
| Hellaswag | 72.8 | 72.7 | |
|
| | | | |
|
| __French__ | __[phi-4](https://huggingface.co./microsoft/phi-4)__ | __[phi-4-FP8-Dynamic (this)](https://huggingface.co./cortecs/phi-4-FP8-Dynamic)__ | |
|
| Avg. | 68.67 | 68.87 | |
|
| Arc | 59.4 | 59.5 | |
|
| Hellaswag | 72.0 | 72.0 | |
|
| MMLU | 74.6 | 75.1 | |
|
| | | | |
|
| __German__ | __[phi-4](https://huggingface.co./microsoft/phi-4)__ | __[phi-4-FP8-Dynamic (this)](https://huggingface.co./cortecs/phi-4-FP8-Dynamic)__ | |
|
| Avg. | 68.73 | 68.33 | |
|
| Arc | 60.2 | 60.0 | |
|
| Hellaswag | 69.8 | 69.6 | |
|
| MMLU | 76.2 | 75.4 | |
|
| | | | |
|
| __Italian__ | __[phi-4](https://huggingface.co./microsoft/phi-4)__ | __[phi-4-FP8-Dynamic (this)](https://huggingface.co./cortecs/phi-4-FP8-Dynamic)__ | |
|
| Avg. | 69.3 | 69.07 | |
|
| Arc | 61.1 | 61.3 | |
|
| Hellaswag | 73.1 | 72.5 | |
|
| MMLU | 73.7 | 73.4 | |
|
| | | | |
|
| __Spanish__ | __[phi-4](https://huggingface.co./microsoft/phi-4)__ | __[phi-4-FP8-Dynamic (this)](https://huggingface.co./cortecs/phi-4-FP8-Dynamic)__ | |
|
| Avg. | 70.6 | 70.03 | |
|
| Arc | 61.6 | 61 | |
|
| Hellaswag | 75.3 | 74.6 | |
|
| MMLU | 74.9 | 74.5 | |
|
|
|
We did not check for data contamination. |
|
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) with `limit=1000`. |
|
|
|
## Usage |
|
Install **vLLM** and |
|
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): |
|
|
|
``` |
|
python -m vllm.entrypoints.openai.api_server --model cortecs/phi-4-FP8-Dynamic --max-model-len 16384 |
|
``` |
|
Access the model: |
|
``` |
|
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { |
|
"model": "cortecs/phi-4-FP8-Dynamic", |
|
"prompt": "San Francisco is a" |
|
} ' |
|
``` |
|
⚡ This model is optimized to handle heavy workloads providing a total throughput of ️**4623 tokens per second** using one NVIDIA L40S ⚡ |