Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation

This repository introduces Cross-D Conv, a novel convolutional operation designed to bridge the dimensional gap between 2D and 3D medical imaging datasets. By leveraging the Fourier domain for phase shifting, Cross-D Conv enables seamless weight transfer between 2D and 3D convolutional operations. This method addresses the challenge of multimodal data scarcity by utilizing abundant 2D data to enhance 3D model performance effectively.

@article{yavuz2024cross,
  title={Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation},
  author={Yavuz, Mehmet Can and Yang, Yang},
  journal={arXiv preprint arXiv:2411.02441},
  year={2024}
}

Performance Metrics

Table 1: ResNet18 Performance on Imagenet and RadImagenet

Dataset Model Precision (Macro) Recall (Macro) F1 (Macro) Balanced Accuracy Average Accuracy
IN1K Regular 0.6807 0.6693 0.6657 0.6693 0.6693
Cross-D Conv 0.6895 0.6881 0.6838 0.6881 0.6881
RIN Regular 0.5830 0.4989 0.5252 0.4989 0.8305
Cross-D Conv 0.5891 0.5228 0.5471 0.5228 0.8374

Table 2: Performance on Image Datasets

Dataset Method OrganC Mean ± Std (CT) OrganS Mean ± Std (CT) Brain Tumor Mean ± Std (MRI) Brain Dataset Mean ± Std (MRI) Breast Mean ± Std (US) Breast Cancer Mean ± Std (US) Average
IN1K 2D Conv 0.862 ± 0.006 0.708 ± 0.035 0.884 ± 0.011 0.305 ± 0.023 0.819 ± 0.019 0.745 ± 0.024 0.720
Cross-D Conv 0.871 ± 0.007 0.763 ± 0.008 0.892 ± 0.010 0.308 ± 0.026 0.836 ± 0.021 0.759 ± 0.022 0.738
RIN 2D Conv 0.842 ± 0.006 0.742 ± 0.008 0.902 ± 0.010 0.268 ± 0.023 0.832 ± 0.021 0.762 ± 0.016 0.725
Cross-D Conv 0.848 ± 0.008 0.743 ± 0.008 0.910 ± 0.013 0.283 ± 0.023 0.835 ± 0.037 0.747 ± 0.024 0.728

Table 3: Performance on Volumetric Datasets

Dataset Method Mosmed Mean ± Std (CT) Lung Aden. Mean ± Std (CT) Fracture Mean ± Std (CT) BraTS21 Mean ± Std (MRI) IXI Mean ± Std (MRI) BUSV Mean ± Std (US) Average
IN1K ACS-Conv 0.523 ± 0.057 0.532 ± 0.034 0.456 ± 0.027 0.539 ± 0.030 0.542 ± 0.044 0.559 ± 0.079 0.525
Cross-D Conv 0.505 ± 0.068 0.513 ± 0.071 0.469 ± 0.027 0.549 ± 0.031 0.583 ± 0.059 0.590 ± 0.064 0.535
RIN ACS-Conv 0.547 ± 0.072 0.548 ± 0.034 0.471 ± 0.034 0.545 ± 0.041 0.555 ± 0.046 0.604 ± 0.063 0.545
Cross-D Conv 0.557 ± 0.102 0.529 ± 0.058 0.491 ± 0.032 0.558 ± 0.044 0.559 ± 0.050 0.602 ± 0.066 0.549

license: mit

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the HF Inference API does not support PyTorch models with pipeline type image-classification