Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
This repository introduces Cross-D Conv, a novel convolutional operation designed to bridge the dimensional gap between 2D and 3D medical imaging datasets. By leveraging the Fourier domain for phase shifting, Cross-D Conv enables seamless weight transfer between 2D and 3D convolutional operations. This method addresses the challenge of multimodal data scarcity by utilizing abundant 2D data to enhance 3D model performance effectively.
@article{yavuz2024cross,
title={Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation},
author={Yavuz, Mehmet Can and Yang, Yang},
journal={arXiv preprint arXiv:2411.02441},
year={2024}
}
Performance Metrics
Table 1: ResNet18 Performance on Imagenet and RadImagenet
Dataset | Model | Precision (Macro) | Recall (Macro) | F1 (Macro) | Balanced Accuracy | Average Accuracy |
---|---|---|---|---|---|---|
IN1K | Regular | 0.6807 | 0.6693 | 0.6657 | 0.6693 | 0.6693 |
Cross-D Conv | 0.6895 | 0.6881 | 0.6838 | 0.6881 | 0.6881 ↑ | |
RIN | Regular | 0.5830 | 0.4989 | 0.5252 | 0.4989 | 0.8305 |
Cross-D Conv | 0.5891 | 0.5228 | 0.5471 | 0.5228 | 0.8374 ↑ |
Table 2: Performance on Image Datasets
Dataset | Method | OrganC Mean ± Std (CT) | OrganS Mean ± Std (CT) | Brain Tumor Mean ± Std (MRI) | Brain Dataset Mean ± Std (MRI) | Breast Mean ± Std (US) | Breast Cancer Mean ± Std (US) | Average |
---|---|---|---|---|---|---|---|---|
IN1K | 2D Conv | 0.862 ± 0.006 | 0.708 ± 0.035 | 0.884 ± 0.011 | 0.305 ± 0.023 | 0.819 ± 0.019 | 0.745 ± 0.024 | 0.720 |
Cross-D Conv | 0.871 ± 0.007 | 0.763 ± 0.008 | 0.892 ± 0.010 | 0.308 ± 0.026 | 0.836 ± 0.021 | 0.759 ± 0.022 | 0.738 ↑ | |
RIN | 2D Conv | 0.842 ± 0.006 | 0.742 ± 0.008 | 0.902 ± 0.010 | 0.268 ± 0.023 | 0.832 ± 0.021 | 0.762 ± 0.016 | 0.725 |
Cross-D Conv | 0.848 ± 0.008 | 0.743 ± 0.008 | 0.910 ± 0.013 | 0.283 ± 0.023 | 0.835 ± 0.037 | 0.747 ± 0.024 | 0.728 |
Table 3: Performance on Volumetric Datasets
Dataset | Method | Mosmed Mean ± Std (CT) | Lung Aden. Mean ± Std (CT) | Fracture Mean ± Std (CT) | BraTS21 Mean ± Std (MRI) | IXI Mean ± Std (MRI) | BUSV Mean ± Std (US) | Average |
---|---|---|---|---|---|---|---|---|
IN1K | ACS-Conv | 0.523 ± 0.057 | 0.532 ± 0.034 | 0.456 ± 0.027 | 0.539 ± 0.030 | 0.542 ± 0.044 | 0.559 ± 0.079 | 0.525 |
Cross-D Conv | 0.505 ± 0.068 | 0.513 ± 0.071 | 0.469 ± 0.027 | 0.549 ± 0.031 | 0.583 ± 0.059 | 0.590 ± 0.064 | 0.535 ↑ | |
RIN | ACS-Conv | 0.547 ± 0.072 | 0.548 ± 0.034 | 0.471 ± 0.034 | 0.545 ± 0.041 | 0.555 ± 0.046 | 0.604 ± 0.063 | 0.545 |
Cross-D Conv | 0.557 ± 0.102 | 0.529 ± 0.058 | 0.491 ± 0.032 | 0.558 ± 0.044 | 0.559 ± 0.050 | 0.602 ± 0.066 | 0.549 |
license: mit
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support PyTorch models with pipeline type image-classification