wav2vec2-xls-r-300m-cs-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training:
- Loss: 0.2327
- Wer: 0.1608
- Cer: 0.0376
The eval.py
script results using a LM are:
WER: 0.10281503199350225
CER: 0.02622802241689026
Model description
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
Evaluation
The model can be evaluated using the attached eval.py
script:
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs
Training and evaluation data
The Common Voice 8.0 train
and validation
datasets were used for training
Training procedure
Training hyperparameters
The following hyperparameters were used during first stage of training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
- mixed_precision_training: Native AMP
The following hyperparameters were used during second stage of training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 |
3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 |
2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 |
0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 |
0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 |
0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 |
0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 |
0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 |
0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 |
0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 |
0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 |
0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 |
0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 |
0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 |
0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 |
0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 |
0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 |
0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 |
Further fine-tuning with slightly different architecture and higher learning rate:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.576 | 8.06 | 250 | 0.2411 | 0.2340 | 0.0502 |
0.2564 | 16.13 | 500 | 0.2305 | 0.2097 | 0.0492 |
0.2018 | 24.19 | 750 | 0.2371 | 0.2059 | 0.0494 |
0.1549 | 32.25 | 1000 | 0.2298 | 0.1844 | 0.0435 |
0.1224 | 40.32 | 1250 | 0.2288 | 0.1725 | 0.0407 |
0.1004 | 48.38 | 1500 | 0.2327 | 0.1608 | 0.0376 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
- Downloads last month
- 19
Dataset used to train comodoro/wav2vec2-xls-r-300m-cs-cv8
Evaluation results
- Test WER on Common Voice 8self-reported10.300
- Test CER on Common Voice 8self-reported2.600
- Test WER on Robust Speech Event - Dev Dataself-reported54.290
- Test WER on Robust Speech Event - Test Dataself-reported44.550