|
--- |
|
tags: |
|
- HealthGatheringSupreme-v1 |
|
- ppo |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- custom-implementation |
|
- deep-rl-course |
|
- sample-factory |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: doom_health_gathering_supreme |
|
type: doom_health_gathering_supreme |
|
metrics: |
|
- type: mean_reward |
|
value: 18.30 +/- 8.82 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# PPO Agent Playing HealthGatheringSupreme-v1 |
|
|
|
This is a trained model of a PPO agent playing HealthGatheringSupreme-v1 using a custom |
|
CleanRL PPO implementation (not sample factory). |
|
|
|
# Hyperparameters |
|
```python |
|
{'env_id': 'HealthGatheringSupreme-v1' |
|
'learning_rate': 0.0001 |
|
'learning_rate_min': 1e-06 |
|
'gamma': 0.99 |
|
'gae_lambda': 0.95 |
|
'clip_coef': 0.2 |
|
'total_timesteps': 10000000 |
|
'recurrence': 32 |
|
'ent_coef': 0.001 |
|
'vf_coef': 0.5 |
|
'max_grad_norm': 0.5 |
|
'num_minibatches': 4 |
|
'update_epochs': 1 |
|
'frame_skip': 4} |
|
``` |
|
|