|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 245.74 +/- 18.06 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
|
|
```python |
|
import gym |
|
|
|
from huggingface_sb3 import load_from_hub |
|
|
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
env = make_vec_env('LunarLander-v2', n_envs=16) |
|
model = PPO('MlpPolicy', env, verbose=1) |
|
|
|
model.learn(total_timesteps=5 * 10**5) |
|
|
|
eval_env = gym.make('LunarLander-v2') |
|
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10, deterministic=True) |
|
print(f"Reward mean: {mean_reward:.2f}, Reward STD: {std_reward:.2f}") |
|
``` |
|
|