Edit model card

Dolphin 2.9.1 Qwen 110b 🐬

Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations

Discord Discord: https://discord.gg/cognitivecomputations

Our appreciation for the sponsors of Dolphin 2.9.1:

This model is based on Qwen1.5-110B, and is governed by tongyi-qianwen license

The base model has 32k context, and the full-weight fine-tuning was with 8k sequence length.

This model was trained FFT on parameters selected by Laser Scanner, using ChatML prompt template format.

example:

<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Dolphin-2.9.1 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.

Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.

Dolphin is licensed according to Qwen's tongyi-qianwen license. We grant permission for any use, including commercial, that falls within accordance with said license. Dolphin was trained on data generated from GPT4, among other models.

Evals

image/png

Training

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: /workspace/axolotl/qwen-checkpoint
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# trust_remote_code: true

# load_in_8bit: true
# load_in_4bit: true
# strict: false

datasets:
  - path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  # - path: /workspace/datasets/dolphin-2.9/Ultrachat200kunfiltered.jsonl
  #   type: sharegpt
  #   conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
    type: sharegpt 
    conversation: chatml
  # - path: /workspace/datasets/dolphin-2.9/SystemConversations.jsonl
  #   type: sharegpt
  #   conversation: chatml

chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qwen-out

# adapter: qlora
# lora_r: 16
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: false

unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# input_layernorm layers
- model.layers.0.input_layernorm
- model.layers.1.input_layernorm
- model.layers.2.input_layernorm
- model.layers.3.input_layernorm
- model.layers.4.input_layernorm
- model.layers.5.input_layernorm
- model.layers.6.input_layernorm
- model.layers.7.input_layernorm
- model.layers.8.input_layernorm
- model.layers.9.input_layernorm
- model.layers.10.input_layernorm
- model.layers.11.input_layernorm
- model.layers.12.input_layernorm
- model.layers.13.input_layernorm
- model.layers.14.input_layernorm
- model.layers.15.input_layernorm
- model.layers.16.input_layernorm
- model.layers.17.input_layernorm
- model.layers.18.input_layernorm
- model.layers.19.input_layernorm
- model.layers.20.input_layernorm
- model.layers.21.input_layernorm
- model.layers.22.input_layernorm
- model.layers.23.input_layernorm
# lm_head layers
# mlp.down_proj layers
- model.layers.17.mlp.down_proj
- model.layers.18.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.24.mlp.down_proj
- model.layers.25.mlp.down_proj
- model.layers.26.mlp.down_proj
- model.layers.27.mlp.down_proj
- model.layers.28.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.31.mlp.down_proj
- model.layers.32.mlp.down_proj
- model.layers.33.mlp.down_proj
- model.layers.34.mlp.down_proj
- model.layers.35.mlp.down_proj
- model.layers.36.mlp.down_proj
- model.layers.37.mlp.down_proj
- model.layers.38.mlp.down_proj
- model.layers.39.mlp.down_proj
- model.layers.40.mlp.down_proj
# mlp.gate_proj layers
- model.layers.51.mlp.gate_proj
- model.layers.50.mlp.gate_proj
- model.layers.53.mlp.gate_proj
- model.layers.52.mlp.gate_proj
- model.layers.49.mlp.gate_proj
- model.layers.45.mlp.gate_proj
- model.layers.46.mlp.gate_proj
- model.layers.47.mlp.gate_proj
- model.layers.57.mlp.gate_proj
- model.layers.48.mlp.gate_proj
- model.layers.56.mlp.gate_proj
- model.layers.41.mlp.gate_proj
- model.layers.54.mlp.gate_proj
- model.layers.43.mlp.gate_proj
- model.layers.44.mlp.gate_proj
- model.layers.60.mlp.gate_proj
- model.layers.55.mlp.gate_proj
- model.layers.40.mlp.gate_proj
- model.layers.42.mlp.gate_proj
- model.layers.58.mlp.gate_proj
- model.layers.36.mlp.gate_proj
- model.layers.37.mlp.gate_proj
- model.layers.38.mlp.gate_proj
- model.layers.39.mlp.gate_proj
# mlp.up_proj layers
- model.layers.50.mlp.up_proj
- model.layers.51.mlp.up_proj
- model.layers.41.mlp.up_proj
- model.layers.49.mlp.up_proj
- model.layers.43.mlp.up_proj
- model.layers.44.mlp.up_proj
- model.layers.40.mlp.up_proj
- model.layers.45.mlp.up_proj
- model.layers.47.mlp.up_proj
- model.layers.48.mlp.up_proj
- model.layers.46.mlp.up_proj
- model.layers.42.mlp.up_proj
- model.layers.39.mlp.up_proj
- model.layers.36.mlp.up_proj
- model.layers.37.mlp.up_proj
- model.layers.38.mlp.up_proj
- model.layers.56.mlp.up_proj
- model.layers.57.mlp.up_proj
- model.layers.53.mlp.up_proj
- model.layers.31.mlp.up_proj
- model.layers.32.mlp.up_proj
- model.layers.34.mlp.up_proj
- model.layers.35.mlp.up_proj
- model.layers.33.mlp.up_proj
# model.embed_tokens layers
# model.norm layers
# post_attention_layernorm layers
- model.layers.0.post_attention_layernorm
- model.layers.1.post_attention_layernorm
- model.layers.2.post_attention_layernorm
- model.layers.3.post_attention_layernorm
- model.layers.4.post_attention_layernorm
- model.layers.5.post_attention_layernorm
- model.layers.6.post_attention_layernorm
- model.layers.7.post_attention_layernorm
- model.layers.8.post_attention_layernorm
- model.layers.9.post_attention_layernorm
- model.layers.10.post_attention_layernorm
- model.layers.11.post_attention_layernorm
- model.layers.12.post_attention_layernorm
- model.layers.13.post_attention_layernorm
- model.layers.14.post_attention_layernorm
- model.layers.15.post_attention_layernorm
- model.layers.16.post_attention_layernorm
- model.layers.17.post_attention_layernorm
- model.layers.18.post_attention_layernorm
- model.layers.19.post_attention_layernorm
- model.layers.20.post_attention_layernorm
- model.layers.21.post_attention_layernorm
- model.layers.22.post_attention_layernorm
- model.layers.23.post_attention_layernorm
# self_attn.k_proj layers
- model.layers.42.self_attn.k_proj
- model.layers.41.self_attn.k_proj
- model.layers.39.self_attn.k_proj
- model.layers.35.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.79.self_attn.k_proj
- model.layers.43.self_attn.k_proj
- model.layers.32.self_attn.k_proj
- model.layers.73.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.76.self_attn.k_proj
- model.layers.30.self_attn.k_proj
- model.layers.40.self_attn.k_proj
- model.layers.33.self_attn.k_proj
- model.layers.78.self_attn.k_proj
- model.layers.34.self_attn.k_proj
- model.layers.37.self_attn.k_proj
- model.layers.45.self_attn.k_proj
- model.layers.44.self_attn.k_proj
- model.layers.71.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.74.self_attn.k_proj
- model.layers.27.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.35.self_attn.o_proj
- model.layers.34.self_attn.o_proj
- model.layers.37.self_attn.o_proj
- model.layers.33.self_attn.o_proj
- model.layers.31.self_attn.o_proj
- model.layers.27.self_attn.o_proj
- model.layers.38.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.39.self_attn.o_proj
- model.layers.43.self_attn.o_proj
- model.layers.29.self_attn.o_proj
- model.layers.0.self_attn.o_proj
- model.layers.50.self_attn.o_proj
- model.layers.32.self_attn.o_proj
- model.layers.45.self_attn.o_proj
- model.layers.30.self_attn.o_proj
- model.layers.60.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.67.self_attn.o_proj
- model.layers.57.self_attn.o_proj
- model.layers.20.self_attn.o_proj
- model.layers.76.self_attn.o_proj
- model.layers.28.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.1.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.2.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.3.self_attn.q_proj
- model.layers.4.self_attn.q_proj
- model.layers.8.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.61.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.62.self_attn.q_proj
- model.layers.36.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.60.self_attn.q_proj
- model.layers.63.self_attn.q_proj
- model.layers.64.self_attn.q_proj
- model.layers.29.self_attn.q_proj
- model.layers.30.self_attn.q_proj
- model.layers.55.self_attn.q_proj
- model.layers.34.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.12.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.18.self_attn.v_proj
- model.layers.19.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.24.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.27.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.32.self_attn.v_proj
- model.layers.33.self_attn.v_proj
- model.layers.34.self_attn.v_proj
- model.layers.35.self_attn.v_proj
- model.layers.36.self_attn.v_proj
- model.layers.37.self_attn.v_proj
- model.layers.38.self_attn.v_proj
- model.layers.39.self_attn.v_proj



sequence_len: 8192 # supports up to 8192
sample_packing: true
pad_to_sequence_len: true

# adapter: lora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:

wandb_project: dolphin-2.9-qwen-1.5-110b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
# resume_from_checkpoint: /workspace/axolotl/qwen-checkpoint
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 4
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"



Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.3528 0.0 1 0.3848
0.3687 0.25 291 0.3988
0.4156 0.5 582 0.3966
0.3826 0.75 873 0.3931

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
111B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cognitivecomputations/dolphin-2.9.1-qwen-110b

Base model

Qwen/Qwen1.5-110B
Finetuned
(4)
this model
Merges
1 model
Quantizations
2 models

Datasets used to train cognitivecomputations/dolphin-2.9.1-qwen-110b