I get one letter responses....
I'm tryna use it like this:
model_id = 'ehartford/WizardLM-7B-Uncensored'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
set quantization configuration to load large model with less GPU memory
this requires the bitsandbytes
library
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
begin initializing HF items, need auth token for these
hf_auth = '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'
model_config = transformers.AutoConfig.from_pretrained(
model_id,
use_auth_token=hf_auth
)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map='auto',
use_auth_token=hf_auth
)
need tokenizer:
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model.eval()
print(f"Model loaded on {device}")
And then....
generate_text = transformers.pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True, # langchain expects the full text
task='text-generation',
# we pass model parameters here too
temperature=0.9, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=256 #, # mex number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
and then:
generate_text("""Yo T how's it goin? You got any a dem no show jobs?
Response:""")
Gives:
[{'generated_text': "Yo T how's it goin? You got any a dem no show jobs?\n\n### Response:H"}]
I'm probably doing a new very dumb thing, I had 13b working a while back....