Edit model card
Configuration Parsing Warning: In config.json: "architectures" must be an array

Calbert: a Catalan Language Model

Introduction

CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture.

It is now available on Hugging Face in its tiny-uncased version and base-uncased (the one you're looking at) as well, and was pretrained on the OSCAR dataset.

For further information or requests, please go to the GitHub repository

Pre-trained models

Model Arch. Training data
codegram / calbert-tiny-uncased Tiny (uncased) OSCAR (4.3 GB of text)
codegram / calbert-base-uncased Base (uncased) OSCAR (4.3 GB of text)

How to use Calbert with HuggingFace

Load Calbert and its tokenizer:

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-base-uncased")
model = AutoModel.from_pretrained("codegram/calbert-base-uncased")

model.eval() # disable dropout (or leave in train mode to finetune

Filling masks using pipeline

from transformers import pipeline

calbert_fill_mask  = pipeline("fill-mask", model="codegram/calbert-base-uncased", tokenizer="codegram/calbert-base-uncased")
results = calbert_fill_mask("M'agrada [MASK] això")
# results
# [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.614592969417572, 'token': 61},
#  {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.06058056280016899, 'token': 4867},
#  {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.017195818945765495, 'token': 43},
#  {'sequence': "[CLS] m'agrada llegir aixo[SEP]", 'score': 0.016321714967489243, 'token': 684},
#  {'sequence': "[CLS] m'agrada escriure aixo[SEP]", 'score': 0.012185849249362946, 'token': 1306}]

Extract contextual embedding features from Calbert output

import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("M'és una mica igual")
# ['▁m', "'", 'es', '▁una', '▁mica', '▁igual']

# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [2, 109, 7, 71, 36, 371, 1103, 3]
# NB: Can be done in one step : tokenize.encode("M'és una mica igual")

# Feed tokens to Calbert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = model(encoded_sentence)
embeddings.size()
# torch.Size([1, 8, 768])
embeddings.detach()
# tensor([[[-0.0261,  0.1166, -0.1075,  ..., -0.0368,  0.0193,  0.0017],
#          [ 0.1289, -0.2252,  0.9881,  ..., -0.1353,  0.3534,  0.0734],
#          [-0.0328, -1.2364,  0.9466,  ...,  0.3455,  0.7010, -0.2085],
#          ...,
#          [ 0.0397, -1.0228, -0.2239,  ...,  0.2932,  0.1248,  0.0813],
#          [-0.0261,  0.1165, -0.1074,  ..., -0.0368,  0.0193,  0.0017],
#          [-0.1934, -0.2357, -0.2554,  ...,  0.1831,  0.6085,  0.1421]]])

Authors

CALBERT was trained and evaluated by Txus Bach, as part of Codegram's applied research.

Downloads last month
18
Inference API
Unable to determine this model’s pipeline type. Check the docs .