cnmoro's picture
Add new SentenceTransformer model
0a4d816 verified
metadata
language:
  - pt
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25863649
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: google o que causa urina turva
    sentences:
      - >-
        Um cagoule, cagoul, kagoule ou kagool (do francês cagoule significa
        balaclava) é o termo inglês britânico para um leve (geralmente sem
        forro), capa de chuva à prova de intempéries ou anorak com um capuz, que
        muitas vezes vem no joelho. O equivalente inglês canadense é
        quebra-vento ou K-Way".
      - >-
        Causas da Urina Nublada. 1 Infecção da bexiga (Cisite) A infecção da
        bexiga é uma infecção da bexiga, geralmente causada por bactérias ou,
        raramente, por Candida. 2 Desidratação é a perda excessiva de água
        corporal. 3 Gonorreia Em Mulheres Gonorreia é uma infecção bacteriana
        transmitida durante o contato sexual".
      - >-
        infecção vaginal ou desidratação. Se a urina é mais leitosa na
        aparência, isso pode ser devido à presença de bactérias, muco, gordura
        ou glóbulos vermelhos ou brancos. A propósito, a urina â-saudável deve
        ser amarela pálida ou de cor palha na aparência. Se a sua urina cheira.
        Engraçado. É mais provável devido a algo que você comeu".
  - source_sentence: como viver a vida sem depressão
    sentences:
      - >-
        a depressão resulta em uma perda da qualidade de vida. Por definição, um
        transtorno depressivo prejudica sua capacidade de funcionar
        adequadamente em seu trabalho, participar adequadamente de
        relacionamentos com os outros e de atender adequadamente às suas
        atividades de vida diária".
      - >-
        Mantém o controle de seus sentimentos e atividades. Quando você se sente
        mais deprimido, você pode começar a se afastar de atividades que você
        normalmente faz, como ir para a aula ou trabalhar, visitar amigos, fazer
        exercícios e até mesmo tomar banho. Você também pode começar a se sentir
        pior ou ter sintomas mais graves de depressão".
      - >-
        EUA Embaixadores e outras agências para sincronizar planos e executar
        atividades de informação e influenciar (IIA) em toda a gama de operações
        militares. 4o Grupo MIS (A) ".
  - source_sentence: o que faz tadasana significa
    sentences:
      - >-
        Esta é uma refeição vegetariana (VGML) que também é preparado chinês ou
        oriental-estilo. Vegetarian Lacto-Ovo Refeição (VLML) Esta é uma
        refeição vegetariana que também pode conter ovos e produtos lácteos.
        Contém um ou mais destes ingredientes: legumes, frutas frescas, ovos,
        produtos lácteos e leguminosas. Não contém qualquer tipo de peixe ou
        carne".
      - >-
        Tadasana, com 'tada' que significa 'montanha', é considerado como uma
        das posturas mais benéficas na ioga. Embora pareça ser bastante simples,
        uma pessoa tem que passar por muita prática para alcançar a postura
        perfeita de tadasana. Acredita-se que a asana também fornece benefícios
        físicos, mas mentais".
      - >-
        Alafia: Uma saudação, como olá com o significado de boa saúde ou paz
        (como shalom). Fanga: Uma dança de boas-vindas tradicional. Muitas vezes
        é escrito como funga.Ashe: (Pronuncia-se ah-shay) O Yoruba acredita que
        a cinza é uma força básica que emana do Criador que une todas as coisas
        vivas e não-viveres.lafia: Uma saudação, como olá com o significado de
        boa saúde ou paz (como shalom). Fanga: Uma dança de boas-vindas
        tradicional. Muitas vezes é escrito como funga".
  - source_sentence: qual é a coisa voando sobre a cidade esmeralda
    sentences:
      - >-
        " Maior aeroporto principal para Chincoteague, Virgínia: O principal
        aeroporto mais próximo de Chincoteague, Virginia é Salisbury-Ocean City
        Wicomico Regional Airport (SBY / KSBY). Este aeroporto fica em
        Salisbury, Maryland e fica a 47 milhas do centro de Chincoteague, VA. Se
        você está procurando voos domésticos para SBY, verifique as companhias
        aéreas que voam para SBY".
      - >-
        1 The Emerald City aparece no filme The Wizard of Oz (1939). 2 The
        Emerald City aparece em The Wizard of Oz série. 3 Depois que a Bruxa
        Malvada do Ocidente é ressuscitada por seus leais Macacos Voadores, ela
        lança um feitiço na Cidade Esmeralda que o mancha".
      - >-
        Isso dá a Esmeralda o valor adicional da boa sorte, da providência e
        como uma ponte entre a mente humana e os escritos Divinos. Onde quer que
        haja alguém impactando a mente e o espírito da humanidade de maneiras
        profundas, é provável que você encontre a Esmeralda na imagem. Esmeralda
        vem sob o domínio da deusa Vênus".
  - source_sentence: o que ajuda a síndrome de ibs
    sentences:
      - >-
        óleo de hortelã-revestida com antecérico é amplamente utilizado para a
        síndrome do intestino irritável. Tem a intenção de reduzir a dor
        abdominal e inchaço da síndrome do intestino irritável. Peppermint é
        considerada uma erva carminativa, o que significa que é usado para
        eliminar o excesso de gás nos intestinos. Embora novas pesquisas sejam
        necessárias, estudos preliminares indicam que pode aliviar os sintomas
        da SII".
      - diarreia ou prisão de ventre que não responde ao tratamento domiciliar".
      - >-
        Este tipo de halva é feito por fritar farinha (como sêmola) em óleo,
        misturando-o em um roux, e depois cozinhá-lo com um xarope açucarado.
        Esta variedade é popular na Grécia, Azerbaijão, Irã, Turquia, Somália,
        índia, Paquistão e Afeganistão".
datasets:
  - cnmoro/AllTripletsMsMarco-PTBR
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.16
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.34
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.38
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08800000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.056000000000000015
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.07233333333333332
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12233333333333335
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.169
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.21633333333333332
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.17347962524637853
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.22666666666666668
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.13734138567741627
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: cosine_accuracy@1
            value: 0.48
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.82
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.86
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.48
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.43999999999999995
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.408
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.35999999999999993
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.035316726913150166
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.10434144077897482
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.15231964640086332
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2237637244339288
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4246552618150319
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6176666666666667
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.31123449548810894
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.32
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.58
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.72
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.82
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15200000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08799999999999997
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2866666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5466666666666667
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6933333333333332
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.79
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.541603756700773
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4797777777777777
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4632721572721572
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: cosine_accuracy@1
            value: 0.16
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.32
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.38
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.09333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.052000000000000005
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.047079365079365075
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12374603174603176
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1498015873015873
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.19921428571428573
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.14911410247271004
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2208571428571429
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.10914868671112705
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.68
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.76
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.86
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.29333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19599999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.122
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.25
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.44
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.49
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.61
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5140251570207169
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6078333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4296608736936407
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: cosine_accuracy@1
            value: 0.08
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.32
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.46
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.58
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.08
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.09200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05800000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.08
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.32
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.46
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.58
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.31757857296738545
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2347460317460317
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.24643617899193362
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: cosine_accuracy@1
            value: 0.26
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.42
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.46
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.48
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.26
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.14800000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.039136679314288055
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.07088473736441431
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.08854886067737688
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.09738297754672119
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20662886108023884
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.33716666666666667
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08492712298780619
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.18
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.039999999999999994
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.036000000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.030000000000000006
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.11
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.17
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.27
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.14834320225800574
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.11593650793650795
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.12214508911612589
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.7
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.84
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.94
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30666666666666664
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.21199999999999997
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.11399999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.644
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7613333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.848
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.902
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.796606045632188
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7831666666666668
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7555666834462891
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.38
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.48
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.58
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16666666666666663
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.03866666666666667
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.10466666666666667
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1456666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.18566666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.1754827925505982
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2969126984126984
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.12469236976328293
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: cosine_accuracy@1
            value: 0.08
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.28
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.36
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.54
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.08
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.09333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05400000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.08
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.28
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.36
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.54
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2899394224946307
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.21268253968253967
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22184431538753369
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: cosine_accuracy@1
            value: 0.34
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.44
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.46
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.52
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.34
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.096
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05600000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.34
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.43
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.44
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.495
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4215626178273768
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3998571428571428
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4072112112025905
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: cosine_accuracy@1
            value: 0.30612244897959184
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4897959183673469
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6122448979591837
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7959183673469388
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.30612244897959184
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2857142857142857
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.28571428571428575
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.2714285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.017318112827283315
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.04934081962696573
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.08015471400681852
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1539608360137575
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.28125127808062544
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4444930353093618
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1901047659008045
            name: Cosine Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: cosine_accuracy@1
            value: 0.2789324960753532
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4438304552590267
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5286342229199373
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6181475667189953
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.2789324960753532
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1927472527472527
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15767032967032968
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.11534065934065933
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.15311673467698103
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2664086945781836
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3266788314143574
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.40487090951605337
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3415592843189738
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3829048366599387
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.27719887197221665
            name: Cosine Map@100

SentenceTransformer

This is a sentence-transformers model trained on the all_triplets_ms_marco-ptbr dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: inf tokens
  • Output Dimensionality: 512 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: pt

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(29794, 512, mode='mean')
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cnmoro/static-retrieval-distilbert-ptbr")
# Run inference
sentences = [
    'o que ajuda a síndrome de ibs',
    'óleo de hortelã-revestida com antecérico é amplamente utilizado para a síndrome do intestino irritável. Tem a intenção de reduzir a dor abdominal e inchaço da síndrome do intestino irritável. Peppermint é considerada uma erva carminativa, o que significa que é usado para eliminar o excesso de gás nos intestinos. Embora novas pesquisas sejam necessárias, estudos preliminares indicam que pode aliviar os sintomas da SII".',
    'diarreia ou prisão de ventre que não responde ao tratamento domiciliar".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with InformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
cosine_accuracy@1 0.16 0.48 0.32 0.16 0.5 0.08 0.26 0.06 0.7 0.18 0.08 0.34 0.3061
cosine_accuracy@3 0.26 0.7 0.58 0.26 0.68 0.32 0.42 0.12 0.84 0.38 0.28 0.44 0.4898
cosine_accuracy@5 0.34 0.82 0.72 0.32 0.76 0.46 0.46 0.18 0.9 0.48 0.36 0.46 0.6122
cosine_accuracy@10 0.38 0.86 0.82 0.38 0.86 0.58 0.48 0.3 0.94 0.58 0.54 0.52 0.7959
cosine_precision@1 0.16 0.48 0.32 0.16 0.5 0.08 0.26 0.06 0.7 0.18 0.08 0.34 0.3061
cosine_precision@3 0.1 0.44 0.2 0.0933 0.2933 0.1067 0.2267 0.04 0.3067 0.1667 0.0933 0.1533 0.2857
cosine_precision@5 0.088 0.408 0.152 0.072 0.196 0.092 0.2 0.036 0.212 0.14 0.072 0.096 0.2857
cosine_precision@10 0.056 0.36 0.088 0.052 0.122 0.058 0.148 0.03 0.114 0.09 0.054 0.056 0.2714
cosine_recall@1 0.0723 0.0353 0.2867 0.0471 0.25 0.08 0.0391 0.06 0.644 0.0387 0.08 0.34 0.0173
cosine_recall@3 0.1223 0.1043 0.5467 0.1237 0.44 0.32 0.0709 0.11 0.7613 0.1047 0.28 0.43 0.0493
cosine_recall@5 0.169 0.1523 0.6933 0.1498 0.49 0.46 0.0885 0.17 0.848 0.1457 0.36 0.44 0.0802
cosine_recall@10 0.2163 0.2238 0.79 0.1992 0.61 0.58 0.0974 0.27 0.902 0.1857 0.54 0.495 0.154
cosine_ndcg@10 0.1735 0.4247 0.5416 0.1491 0.514 0.3176 0.2066 0.1483 0.7966 0.1755 0.2899 0.4216 0.2813
cosine_mrr@10 0.2267 0.6177 0.4798 0.2209 0.6078 0.2347 0.3372 0.1159 0.7832 0.2969 0.2127 0.3999 0.4445
cosine_map@100 0.1373 0.3112 0.4633 0.1091 0.4297 0.2464 0.0849 0.1221 0.7556 0.1247 0.2218 0.4072 0.1901

Nano BEIR

Metric Value
cosine_accuracy@1 0.2789
cosine_accuracy@3 0.4438
cosine_accuracy@5 0.5286
cosine_accuracy@10 0.6181
cosine_precision@1 0.2789
cosine_precision@3 0.1927
cosine_precision@5 0.1577
cosine_precision@10 0.1153
cosine_recall@1 0.1531
cosine_recall@3 0.2664
cosine_recall@5 0.3267
cosine_recall@10 0.4049
cosine_ndcg@10 0.3416
cosine_mrr@10 0.3829
cosine_map@100 0.2772

Training Details

Training Dataset

all_triplets_ms_marco-ptbr

  • Dataset: all_triplets_ms_marco-ptbr at f934503
  • Size: 25,863,649 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 5 characters
    • mean: 35.31 characters
    • max: 105 characters
    • min: 31 characters
    • mean: 356.8 characters
    • max: 1050 characters
    • min: 13 characters
    • mean: 359.92 characters
    • max: 1153 characters
  • Samples:
    anchor positive negative
    partes mais quentes da califórnia em dezembro as melhores praias da Califórnia para o clima quente do inverno estão ao longo da costa sul, particularmente as margens viradas para o sul. As temperaturas mais quentes acontecem em Avila Beach, Long Beach e Laguna Beach, onde os dias se dem até pelo menos 67 graus F (19 C) em média em dezembro e janeiro". Outros destinos da ilha do Caribe com uma combinação de clima quente e não muita chuva em dezembro incluem Kingston, Jamaica (87 F), St. Kitts (85 F) e Nassau, Bahamas (79 F). Nos EUA continentais, o clima de férias mais quente em dezembro é mais frequentemente a Flórida. Tente afundar seus dedos na areia branca quente e macia de Nápoles e Sarasota, dois dos nossos locais de férias de inverno românticos da Flórida da Costa do Golfo da Flórida".
    definição de anosmia Anosmia (/aen-É-zmiÉ/) A sÉ-zmiÉ é a incapacidade de perceber o odor ou a falta de funcionamento da autaraction a perda do sentido. Anemia é um termo médico que se refere a um número reduzido de glóbulos vermelhos circulantes (RBC), hemoglobina (Hb), ou ambos. Não é uma doença específica, mas sim o resultado de algum outro processo de doença ou condição.nemia é um termo médico referindo-se a um número reduzido de glóbulos vermelhos circulantes (RBC), hemoglobina (Hb), ou ambos. Não é uma doença específica, mas sim o resultado de algum outro processo ou condição de doença".
    can fêmeas obter hemofilia uma fêmea que herda um afetado x cromossomo torna-se um portador de hemofilia que ela pode passar o gene afetado para seus filhos, além de uma mulher que é um portador às vezes pode ter sintomas de hemofilia na verdade alguns médicos descrevem essas mulheres como tendo mulheres leves que carregam o gene da hemofilia que carregam o gene da hemofilia e têm quaisquer sintomas do transtorno deve ser verificado e cuidado por um provedor de saúde de boa qualidade cuidados médicos e enfermeiros que podem evitar que os problemas sérios que saibam que muitos. Hemofilia é um X ligado ou sexo ligado a doença hereditária que significa que o defeito é realizado no cromossomo X. As fêmeas têm dois cromossomos X e os machos têm um cromossomo X e um cromossomo Y. O cromossomo X, que carrega o gene da hemofilia em homens, faz com que Fator VIII ou Fator IX esteja ausente ou deficiente (nível baixo). Cada criança de um portador de hemofilia tem 50% de chance de ser afetada pela hemofilia; seja ter hemofilia para um macho ou ser portadora de uma mulher".
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            512,
            384,
            256,
            128,
            64,
            32,
            16,
            8
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

all_triplets_ms_marco-ptbr

  • Dataset: all_triplets_ms_marco-ptbr at f934503
  • Size: 527,832 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 characters
    • mean: 36.15 characters
    • max: 193 characters
    • min: 20 characters
    • mean: 360.3 characters
    • max: 1097 characters
    • min: 14 characters
    • mean: 365.67 characters
    • max: 1145 characters
  • Samples:
    anchor positive negative
    diferença entre o ovo cozido duro e o ovo escalfado o ovo é escalfado (ou cozido) quando o branco é cozido e a gema ainda é escorrendo, um ovo cozido duro é cozido em sua casca por 7 a 8 minutos até que seja cozido sólido todo o caminho. Carmen D 4 anos atrás. Os polegares para cima. 0". mexidos, escalfados, fritos ou cozidos, e dado todas essas variações, a questão de longa duração que eles podem ser armazenados com segurança é uma boa a considerar. Uma bactéria chamada Salmonella enteritidis pode estar presente dentro da gema, mas ovos duros os torna seguros para comer".
    quando você pode coletar segurança social se deficientes Como a Segurança Social pagará benefícios de invalidez a uma pessoa com deficiência é determinada pela data em que você apresentou sua reivindicação de deficiência ao se candidatar à segurança social e/ou incapacidade da SSI. Se for esse o caso, você não terá mais direito a benefícios de Deficiência da Segurança Social, mas você pode ter direito a benefícios de aposentadoria da Previdência Social uma vez que você atinja a idade de 65 anos. Se você decidir voltar ao trabalho seus benefícios não vai parar imediatamente. Você pode ganhar renda em uma base de â-trialâ para até nove meses antes de seus benefícios de Deficiência Social são revogados. Se você tentar voltar ao trabalho e descobrir que você é incapaz de lidar com isso, seus Benefícios de Segurança Social não terminará.ou pode ganhar renda em uma base de âtrialâ por até nove meses antes de seus benefícios de deficientes de segurança social são revogados. Se você tentar voltar ao trabalho e descobrir que não consegue lidar com isso, seus Benefícios de Segurança Social não terminarão".
    número de contato da sede da união ocidental número de telefone da União Ocidental. O número e as etapas abaixo são votados no 1 de 4 por mais de 7190 clientes da Western Union. 800-999-9660. Suporte telefônico da Western Union. Leia as principais etapas e dicas abaixo. Eles chamam você em vez dissoNão esperando em espera. Free.ress 1 e continue pressionando 0. Este número de telefone é popular entre outros clientes da Western Union, mas não se esqueça de seguir os 6 passos mais abaixo". Neste artigo eu listei o número de telefone de serviço ao cliente Western Union essencial e o número de telefone de contato e números gratuitos para a Western Union. Western Union operando em muitos países, então eu listei números de telefone de atendimento ao cliente internacional Western Union. Se você é o cliente da Western Union e gosta de saber informações sobre produtos e serviços da Western Union, basta usar os seguintes números".
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            512,
            384,
            256,
            128,
            64,
            32,
            16,
            8
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • learning_rate: 0.2
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.2
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoClimateFEVER_cosine_ndcg@10 NanoDBPedia_cosine_ndcg@10 NanoFEVER_cosine_ndcg@10 NanoFiQA2018_cosine_ndcg@10 NanoHotpotQA_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoNFCorpus_cosine_ndcg@10 NanoNQ_cosine_ndcg@10 NanoQuoraRetrieval_cosine_ndcg@10 NanoSCIDOCS_cosine_ndcg@10 NanoArguAna_cosine_ndcg@10 NanoSciFact_cosine_ndcg@10 NanoTouche2020_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0.0000 1 66.3307 - - - - - - - - - - - - - - -
0.0198 1000 42.3936 27.4352 0.1314 0.3901 0.4362 0.0856 0.4261 0.2743 0.1524 0.1226 0.7497 0.1547 0.1544 0.4066 0.2984 0.2910
0.0396 2000 21.4189 17.5353 0.1443 0.4301 0.5087 0.1281 0.4315 0.2600 0.1859 0.1462 0.7842 0.1978 0.1944 0.4489 0.3432 0.3233
0.0594 3000 15.8675 14.6976 0.1579 0.4524 0.5459 0.1350 0.4307 0.2972 0.1980 0.1443 0.7807 0.1921 0.2016 0.4302 0.3561 0.3325
0.0792 4000 14.0655 13.5888 0.1803 0.4522 0.5321 0.1402 0.4479 0.2982 0.1914 0.1912 0.7992 0.2001 0.2143 0.4502 0.3432 0.3416
0.0990 5000 13.2932 13.0002 0.1926 0.4523 0.5118 0.1607 0.4451 0.3059 0.2048 0.2168 0.7903 0.1974 0.2387 0.4653 0.3520 0.3487
0.1188 6000 12.8258 12.6530 0.1998 0.4510 0.5437 0.1296 0.4506 0.3335 0.2100 0.1894 0.8074 0.1761 0.2423 0.4456 0.3688 0.3498
0.1386 7000 12.5101 12.3932 0.1775 0.4638 0.4978 0.1503 0.4547 0.3197 0.2037 0.1864 0.8178 0.1757 0.1987 0.4518 0.3382 0.3412
0.1584 8000 12.2601 12.1873 0.1884 0.4794 0.5263 0.1668 0.4764 0.3603 0.2115 0.1673 0.7835 0.1720 0.2266 0.4534 0.3535 0.3512
0.1782 9000 12.0884 12.0142 0.2139 0.4735 0.5170 0.1598 0.4498 0.3448 0.2002 0.1983 0.7901 0.1651 0.2351 0.4458 0.3240 0.3475
0.1980 10000 11.9352 11.8797 0.2123 0.4813 0.5146 0.1452 0.5095 0.3642 0.1983 0.1637 0.8041 0.1699 0.2384 0.4545 0.3198 0.3520
0.2178 11000 11.8034 11.7615 0.1776 0.4579 0.5237 0.1673 0.4808 0.3068 0.2009 0.1828 0.8173 0.1706 0.2572 0.4408 0.3205 0.3465
0.2376 12000 11.6906 11.6589 0.1789 0.4593 0.5512 0.1341 0.4894 0.3340 0.2106 0.1811 0.8192 0.1773 0.2381 0.4480 0.3209 0.3494
0.2573 13000 11.5868 11.5586 0.1877 0.4648 0.5137 0.1494 0.4939 0.3212 0.2193 0.2025 0.8120 0.1640 0.2452 0.4258 0.3561 0.3504
0.2771 14000 11.4752 11.4752 0.1938 0.4411 0.5186 0.1418 0.4839 0.3411 0.2106 0.1688 0.8217 0.1744 0.2768 0.4688 0.3384 0.3523
0.2969 15000 11.4299 11.3873 0.1989 0.4501 0.5109 0.1309 0.5037 0.3280 0.2040 0.1649 0.8035 0.1707 0.2549 0.4714 0.3308 0.3479
0.3167 16000 11.3369 11.3173 0.1880 0.4666 0.4988 0.1430 0.5086 0.3385 0.2054 0.1786 0.8181 0.1712 0.2766 0.4555 0.3220 0.3516
0.3365 17000 11.2737 11.2503 0.1748 0.4673 0.4849 0.1485 0.4902 0.3567 0.2160 0.1501 0.8059 0.1659 0.2476 0.4728 0.3121 0.3456
0.3563 18000 11.2138 11.1802 0.1738 0.4619 0.5408 0.1426 0.4986 0.3427 0.2193 0.1594 0.7995 0.1597 0.2567 0.4331 0.3140 0.3463
0.3761 19000 11.1662 11.1250 0.1625 0.4522 0.5313 0.1419 0.5093 0.3499 0.1982 0.1713 0.8000 0.1693 0.2332 0.4799 0.3353 0.3488
0.3959 20000 11.0674 11.0633 0.1627 0.4608 0.5167 0.1368 0.5025 0.3653 0.2090 0.1743 0.8166 0.1670 0.2281 0.4614 0.3408 0.3494
0.4157 21000 11.0251 11.0233 0.1730 0.4695 0.4854 0.1417 0.5211 0.3393 0.2246 0.1477 0.8146 0.1692 0.2148 0.4584 0.3356 0.3458
0.4355 22000 10.9932 10.9695 0.1709 0.4630 0.5161 0.1400 0.4945 0.3507 0.2226 0.1585 0.8103 0.1595 0.2355 0.4325 0.3343 0.3453
0.4553 23000 10.9327 10.9186 0.1803 0.4509 0.5341 0.1454 0.5241 0.3485 0.2032 0.1480 0.8056 0.1634 0.2206 0.4557 0.3266 0.3466
0.4751 24000 10.8936 10.8830 0.1891 0.4450 0.5202 0.1485 0.5006 0.3427 0.2079 0.1639 0.8115 0.1731 0.2213 0.4269 0.3424 0.3456
0.4949 25000 10.8654 10.8392 0.1610 0.4479 0.5524 0.1547 0.5002 0.3377 0.2128 0.1802 0.7996 0.1937 0.2240 0.4506 0.3097 0.3480
0.5147 26000 10.8168 10.7826 0.1784 0.4558 0.5211 0.1482 0.5099 0.3531 0.2165 0.1456 0.8090 0.1782 0.2367 0.4240 0.3251 0.3463
0.5345 27000 10.7554 10.7164 0.1841 0.4593 0.5183 0.1377 0.4843 0.3469 0.2066 0.1632 0.8099 0.1818 0.2779 0.4305 0.3270 0.3483
0.5543 28000 10.6605 10.6510 0.1780 0.4566 0.5328 0.1439 0.4923 0.3519 0.2152 0.1507 0.8060 0.1838 0.2585 0.4256 0.3147 0.3469
0.5741 29000 10.6202 10.5959 0.1866 0.4668 0.5370 0.1553 0.5118 0.3699 0.2265 0.1553 0.8090 0.1732 0.2614 0.4287 0.3193 0.3539
0.5939 30000 10.5399 10.5401 0.1862 0.4593 0.5237 0.1510 0.5273 0.3353 0.2101 0.1594 0.8092 0.1709 0.2643 0.4308 0.3199 0.3498
0.6137 31000 10.5212 10.4866 0.2000 0.4547 0.5131 0.1450 0.5213 0.3341 0.2136 0.1518 0.8094 0.1726 0.2911 0.4246 0.3388 0.3516
0.6335 32000 10.4767 10.4375 0.1873 0.4487 0.5162 0.1377 0.5186 0.3463 0.2184 0.1711 0.8087 0.1769 0.2871 0.4441 0.3297 0.3531
0.6533 33000 10.4247 10.4089 0.1949 0.4572 0.5322 0.1524 0.5286 0.3309 0.2204 0.1464 0.8006 0.1765 0.2727 0.4314 0.3323 0.3520
0.6731 34000 10.389 10.3680 0.1867 0.4628 0.5265 0.1369 0.5196 0.3411 0.2224 0.1597 0.8003 0.1702 0.2678 0.4386 0.3163 0.3499
0.6929 35000 10.3299 10.3354 0.1937 0.4614 0.5042 0.1430 0.5215 0.3416 0.2159 0.1488 0.8101 0.1764 0.2601 0.4525 0.3192 0.3499
0.7127 36000 10.3103 10.3054 0.1764 0.4555 0.5281 0.1577 0.5291 0.3338 0.2049 0.1483 0.7980 0.1660 0.2626 0.4153 0.3137 0.3453
0.7325 37000 10.2869 10.2670 0.1703 0.4488 0.5188 0.1560 0.5200 0.3370 0.2118 0.1513 0.8108 0.1671 0.2853 0.4057 0.3102 0.3456
0.7523 38000 10.2414 10.2453 0.1713 0.4556 0.5400 0.1568 0.5228 0.3359 0.2081 0.1624 0.8063 0.1636 0.2644 0.4413 0.3117 0.3492
0.7720 39000 10.231 10.2169 0.1595 0.4577 0.5599 0.1510 0.5195 0.3300 0.2070 0.1635 0.8145 0.1615 0.2846 0.4269 0.3236 0.3507
0.7918 40000 10.2115 10.1964 0.1734 0.4621 0.5414 0.1481 0.5300 0.3438 0.2072 0.1712 0.8062 0.1639 0.2815 0.4122 0.3000 0.3493
0.8116 41000 10.1947 10.1671 0.1712 0.4559 0.5450 0.1523 0.5145 0.3392 0.2198 0.1588 0.7927 0.1734 0.2826 0.4281 0.3014 0.3488
0.8314 42000 10.1666 10.1581 0.1648 0.4464 0.5555 0.1639 0.5014 0.3477 0.2099 0.1443 0.7988 0.1640 0.2784 0.4482 0.2983 0.3478
0.8512 43000 10.1528 10.1265 0.1789 0.4437 0.5328 0.1525 0.5266 0.3369 0.2016 0.1561 0.8097 0.1742 0.2863 0.4503 0.3008 0.3500
0.8710 44000 10.1054 10.1122 0.1716 0.4542 0.5310 0.1610 0.5359 0.3454 0.2022 0.1725 0.7948 0.1666 0.2840 0.4246 0.3149 0.3507
0.8908 45000 10.0878 10.0890 0.1729 0.4489 0.5533 0.1561 0.5401 0.3413 0.2135 0.1510 0.7989 0.1735 0.2950 0.4348 0.3202 0.3538
0.9106 46000 10.0875 10.0730 0.1776 0.4550 0.5499 0.1563 0.5313 0.3357 0.2084 0.1578 0.8058 0.1739 0.2976 0.4468 0.3176 0.3549
0.9304 47000 10.0615 10.0561 0.1816 0.4569 0.5310 0.1583 0.5279 0.3332 0.2058 0.1532 0.7976 0.1727 0.2813 0.4513 0.3146 0.3512
0.9502 48000 10.0378 10.0374 0.1916 0.4558 0.5242 0.1552 0.5368 0.3518 0.2050 0.1617 0.8065 0.1736 0.2898 0.4268 0.3109 0.3531
0.9700 49000 10.0393 10.0283 0.1809 0.4542 0.5319 0.1594 0.5240 0.3329 0.2070 0.1595 0.7998 0.1670 0.2885 0.4522 0.3204 0.3521
0.9898 50000 10.0035 10.0112 0.1721 0.4495 0.5200 0.1548 0.5294 0.3514 0.2124 0.1597 0.8063 0.1798 0.2785 0.4479 0.3322 0.3534
1.0096 51000 9.9575 10.0040 0.1737 0.4476 0.5422 0.1527 0.5345 0.3513 0.2076 0.1513 0.8071 0.1681 0.2715 0.4547 0.3149 0.3521
1.0294 52000 9.9083 9.9996 0.1668 0.4530 0.5315 0.1645 0.5212 0.3375 0.2168 0.1458 0.8046 0.1720 0.2746 0.4432 0.3234 0.3504
1.0492 53000 9.9229 9.9895 0.1777 0.4434 0.5348 0.1601 0.5158 0.3390 0.2130 0.1461 0.8014 0.1717 0.2808 0.4546 0.3161 0.3504
1.0690 54000 9.884 9.9758 0.1797 0.4507 0.5372 0.1685 0.5202 0.3398 0.2174 0.1739 0.7949 0.1744 0.2944 0.4334 0.3191 0.3541
1.0888 55000 9.9108 9.9650 0.1780 0.4458 0.5249 0.1510 0.5190 0.3492 0.2222 0.1639 0.7968 0.1895 0.2878 0.4251 0.3153 0.3514
1.1086 56000 9.9019 9.9556 0.1893 0.4465 0.5368 0.1514 0.5131 0.3384 0.2151 0.1609 0.8029 0.1886 0.2993 0.4280 0.3223 0.3533
1.1284 57000 9.8931 9.9392 0.1837 0.4409 0.5381 0.1632 0.5254 0.3332 0.2046 0.1470 0.8067 0.1915 0.2797 0.4167 0.3212 0.3501
1.1482 58000 9.8714 9.9229 0.1731 0.4440 0.5289 0.1477 0.5073 0.3257 0.2063 0.1631 0.8079 0.1844 0.3001 0.4391 0.3194 0.3498
1.1680 59000 9.885 9.9159 0.1756 0.4498 0.5274 0.1580 0.5156 0.3227 0.2101 0.1470 0.8042 0.1783 0.3026 0.4215 0.3237 0.3490
1.1878 60000 9.8824 9.9016 0.1794 0.4512 0.5261 0.1523 0.5093 0.3427 0.1964 0.1468 0.8029 0.1756 0.2898 0.4325 0.3173 0.3479
1.2076 61000 9.8846 9.8969 0.1768 0.4518 0.5452 0.1643 0.5087 0.3471 0.2004 0.1509 0.7959 0.1847 0.2954 0.4386 0.3099 0.3515
1.2274 62000 9.8534 9.8831 0.1848 0.4532 0.5422 0.1583 0.5177 0.3546 0.2087 0.1546 0.7985 0.1815 0.3024 0.4335 0.3285 0.3553
1.2472 63000 9.8494 9.8759 0.1776 0.4490 0.5305 0.1641 0.5138 0.3517 0.2043 0.1474 0.8040 0.1809 0.2947 0.4252 0.3183 0.3509
1.2670 64000 9.8514 9.8639 0.1820 0.4553 0.5386 0.1569 0.5055 0.3442 0.2116 0.1396 0.7949 0.1807 0.2820 0.4225 0.3154 0.3484
1.2867 65000 9.8341 9.8563 0.1772 0.4507 0.5300 0.1579 0.5072 0.3392 0.2067 0.1529 0.7961 0.1825 0.2874 0.4215 0.3195 0.3484
1.3065 66000 9.8417 9.8492 0.1784 0.4557 0.5251 0.1598 0.5011 0.3324 0.2183 0.1566 0.7928 0.1821 0.2873 0.4181 0.3153 0.3479
1.3263 67000 9.8081 9.8369 0.1831 0.4488 0.5360 0.1681 0.5046 0.3317 0.2064 0.1467 0.8013 0.1738 0.2887 0.4381 0.3043 0.3486
1.3461 68000 9.8001 9.8274 0.1842 0.4563 0.5387 0.1647 0.5080 0.3174 0.2089 0.1595 0.7964 0.1705 0.2918 0.4187 0.3054 0.3477
1.3659 69000 9.8059 9.8159 0.1827 0.4570 0.5528 0.1715 0.5207 0.3289 0.2046 0.1543 0.8094 0.1757 0.2839 0.4281 0.3025 0.3517
1.3857 70000 9.7848 9.8117 0.1656 0.4547 0.5381 0.1562 0.5091 0.3233 0.2127 0.1539 0.8000 0.1722 0.2885 0.4168 0.3091 0.3462
1.4055 71000 9.7847 9.8049 0.1786 0.4499 0.5495 0.1675 0.5194 0.3180 0.2133 0.1587 0.8025 0.1588 0.2895 0.4224 0.3056 0.3487
1.4253 72000 9.7587 9.7976 0.1706 0.4562 0.5425 0.1530 0.5283 0.3356 0.2125 0.1564 0.8055 0.1660 0.2939 0.4219 0.3005 0.3495
1.4451 73000 9.7652 9.7898 0.1787 0.4479 0.5406 0.1539 0.5281 0.3291 0.2088 0.1438 0.8058 0.1767 0.2938 0.4115 0.2960 0.3473
1.4649 74000 9.7507 9.7830 0.1746 0.4394 0.5426 0.1647 0.5201 0.3290 0.2131 0.1507 0.8039 0.1643 0.2856 0.4510 0.3030 0.3494
1.4847 75000 9.7412 9.7757 0.1701 0.4386 0.5244 0.1639 0.5140 0.3218 0.2111 0.1542 0.8086 0.1714 0.2765 0.4224 0.2973 0.3442
1.5045 76000 9.7412 9.7727 0.1823 0.4477 0.5337 0.1544 0.5117 0.3381 0.2074 0.1605 0.8079 0.1710 0.2820 0.4325 0.2996 0.3484
1.5243 77000 9.7475 9.7626 0.1743 0.4423 0.5343 0.1511 0.5142 0.3224 0.2124 0.1567 0.8076 0.1802 0.2946 0.4303 0.3044 0.3481
1.5441 78000 9.7512 9.7590 0.1737 0.4406 0.5323 0.1535 0.5102 0.3419 0.2099 0.1476 0.8058 0.1626 0.2877 0.4073 0.3015 0.3442
1.5639 79000 9.7406 9.7501 0.1735 0.4472 0.5189 0.1639 0.5148 0.3232 0.2065 0.1555 0.8015 0.1698 0.2826 0.4320 0.3047 0.3457
1.5837 80000 9.7409 9.7426 0.1799 0.4405 0.5225 0.1627 0.5158 0.3487 0.2051 0.1608 0.8079 0.1657 0.2857 0.4469 0.3014 0.3495
1.6035 81000 9.7125 9.7399 0.1781 0.4402 0.5230 0.1564 0.5153 0.3439 0.2167 0.1622 0.8070 0.1706 0.3040 0.4512 0.3071 0.3520
1.6233 82000 9.7164 9.7319 0.1806 0.4485 0.5317 0.1486 0.5220 0.3353 0.2087 0.1604 0.8033 0.1783 0.2899 0.4178 0.3025 0.3483
1.6431 83000 9.7203 9.7257 0.1766 0.4513 0.5120 0.1581 0.5108 0.3375 0.2084 0.1635 0.8085 0.1682 0.2904 0.4334 0.2932 0.3471
1.6629 84000 9.7035 9.7229 0.1759 0.4447 0.5391 0.1555 0.5104 0.3369 0.2067 0.1584 0.8036 0.1754 0.2943 0.4266 0.3032 0.3485
1.6827 85000 9.7277 9.7206 0.1757 0.4401 0.5229 0.1540 0.5188 0.3448 0.2070 0.1521 0.8078 0.1731 0.2967 0.4287 0.2984 0.3477
1.7025 86000 9.6992 9.7184 0.1849 0.4403 0.5276 0.1598 0.5196 0.3342 0.2110 0.1585 0.8119 0.1790 0.2887 0.4211 0.3067 0.3495
1.7223 87000 9.6789 9.7084 0.1744 0.4400 0.5367 0.1572 0.5068 0.3289 0.2088 0.1622 0.8087 0.1750 0.2886 0.4340 0.3095 0.3485
1.7421 88000 9.6939 9.7020 0.1736 0.4400 0.5423 0.1644 0.5125 0.3339 0.2064 0.1643 0.8052 0.1869 0.2921 0.4120 0.3091 0.3494
1.7619 89000 9.661 9.6965 0.1651 0.4404 0.5433 0.1625 0.5234 0.3362 0.2103 0.1682 0.8052 0.1797 0.2823 0.4291 0.3052 0.3501
1.7816 90000 9.6624 9.6919 0.1689 0.4438 0.5317 0.1496 0.5125 0.3421 0.2056 0.1643 0.8078 0.1750 0.3034 0.4187 0.3003 0.3480
1.8014 91000 9.666 9.6855 0.1719 0.4468 0.5395 0.1572 0.5188 0.3430 0.2032 0.1506 0.8065 0.1795 0.2888 0.4185 0.2940 0.3476
1.8212 92000 9.6715 9.6823 0.1703 0.4456 0.5311 0.1568 0.5193 0.3530 0.2046 0.1635 0.7988 0.1758 0.2951 0.4236 0.2994 0.3490
1.8410 93000 9.6597 9.6800 0.1703 0.4491 0.5255 0.1622 0.5194 0.3491 0.2137 0.1444 0.8062 0.1728 0.3083 0.4199 0.3070 0.3498
1.8608 94000 9.6594 9.6740 0.1668 0.4469 0.5233 0.1536 0.5194 0.3396 0.2077 0.1586 0.8095 0.1809 0.2895 0.4238 0.3000 0.3477
1.8806 95000 9.6565 9.6647 0.1738 0.4461 0.5312 0.1502 0.5392 0.3444 0.2074 0.1555 0.8063 0.1823 0.2979 0.4282 0.3023 0.3511
1.9004 96000 9.6476 9.6640 0.1759 0.4456 0.5433 0.1565 0.5318 0.3470 0.2149 0.1548 0.8047 0.1717 0.3024 0.4359 0.2953 0.3523
1.9202 97000 9.6588 9.6563 0.1815 0.4449 0.5431 0.1617 0.5267 0.3460 0.2061 0.1557 0.8068 0.1667 0.2997 0.4463 0.3066 0.3532
1.9400 98000 9.6232 9.6491 0.1769 0.4426 0.5411 0.1562 0.5255 0.3430 0.2074 0.1534 0.8108 0.1686 0.2991 0.4395 0.2915 0.3504
1.9598 99000 9.6412 9.6446 0.1722 0.4434 0.5368 0.1652 0.5236 0.3378 0.1998 0.1533 0.8043 0.1670 0.3053 0.4498 0.2899 0.3499
1.9796 100000 9.6418 9.6400 0.1740 0.4444 0.5379 0.1635 0.5284 0.3340 0.2038 0.1682 0.8013 0.1780 0.3077 0.4224 0.2877 0.3501
1.9994 101000 9.6363 9.6378 0.1784 0.4439 0.5349 0.1626 0.5273 0.3432 0.2168 0.1602 0.8028 0.1797 0.2987 0.4336 0.2999 0.3525
2.0192 102000 9.5424 9.6456 0.1817 0.4450 0.5436 0.1563 0.5333 0.3374 0.2124 0.1551 0.8045 0.1767 0.2880 0.4329 0.2923 0.3507
2.0390 103000 9.5632 9.6461 0.1818 0.4505 0.5405 0.1566 0.5251 0.3387 0.2047 0.1533 0.7995 0.1697 0.2860 0.4399 0.2936 0.3492
2.0588 104000 9.5526 9.6401 0.1775 0.4386 0.5245 0.1471 0.5212 0.3383 0.2110 0.1548 0.8061 0.1663 0.2945 0.4264 0.2995 0.3466
2.0786 105000 9.5694 9.6374 0.1915 0.4489 0.5283 0.1506 0.5276 0.3393 0.2016 0.1498 0.8045 0.1723 0.2938 0.4376 0.3007 0.3497
2.0984 106000 9.5772 9.6314 0.1728 0.4530 0.5356 0.1605 0.5278 0.3358 0.2061 0.1503 0.8050 0.1734 0.3016 0.4274 0.2991 0.3499
2.1182 107000 9.5735 9.6322 0.1711 0.4380 0.5450 0.1618 0.5333 0.3462 0.2026 0.1591 0.8057 0.1711 0.3005 0.4159 0.2984 0.3499
2.1380 108000 9.5764 9.6262 0.1738 0.4547 0.5394 0.1548 0.5330 0.3372 0.2003 0.1589 0.8026 0.1768 0.2914 0.4384 0.2877 0.3499
2.1578 109000 9.5918 9.6217 0.1699 0.4404 0.5272 0.1469 0.5248 0.3483 0.2020 0.1507 0.8006 0.1771 0.2851 0.4183 0.3009 0.3456
2.1776 110000 9.5565 9.6192 0.1700 0.4443 0.5291 0.1477 0.5296 0.3409 0.2072 0.1530 0.8042 0.1752 0.2823 0.4203 0.2976 0.3463
2.1974 111000 9.5725 9.6153 0.1733 0.4434 0.5258 0.1499 0.5215 0.3397 0.1976 0.1544 0.8031 0.1830 0.2749 0.4255 0.2939 0.3451
2.2172 112000 9.552 9.6102 0.1765 0.4440 0.5258 0.1539 0.5315 0.3397 0.1998 0.1561 0.8026 0.1833 0.2790 0.4262 0.2914 0.3469
2.2370 113000 9.5574 9.6062 0.1810 0.4425 0.5363 0.1573 0.5344 0.3341 0.2008 0.1549 0.8016 0.1767 0.2808 0.4411 0.2972 0.3491
2.2568 114000 9.5671 9.6021 0.1837 0.4423 0.5330 0.1547 0.5164 0.3357 0.2062 0.1572 0.7990 0.1733 0.2852 0.4280 0.2894 0.3465
2.2766 115000 9.5393 9.6005 0.1857 0.4413 0.5339 0.1639 0.5091 0.3312 0.2057 0.1547 0.8018 0.1820 0.2761 0.4236 0.2909 0.3462
2.2963 116000 9.5581 9.5972 0.1807 0.4443 0.5454 0.1488 0.5168 0.3191 0.2154 0.1558 0.8021 0.1770 0.2949 0.4140 0.2945 0.3468
2.3161 117000 9.5702 9.5921 0.1804 0.4424 0.5471 0.1499 0.5147 0.3227 0.2109 0.1461 0.8018 0.1783 0.3053 0.4120 0.2889 0.3462
2.3359 118000 9.5395 9.5915 0.1756 0.4371 0.5301 0.1582 0.5210 0.3224 0.2090 0.1507 0.7967 0.1780 0.2988 0.4034 0.2933 0.3442
2.3557 119000 9.5434 9.5855 0.1735 0.4458 0.5441 0.1566 0.5253 0.3281 0.2098 0.1517 0.7965 0.1736 0.3016 0.4166 0.2859 0.3468
2.3755 120000 9.5444 9.5812 0.1709 0.4490 0.5432 0.1534 0.5174 0.3308 0.2043 0.1503 0.7965 0.1748 0.2895 0.4206 0.2802 0.3447
2.3953 121000 9.5562 9.5739 0.1779 0.4413 0.5380 0.1467 0.5184 0.3371 0.2057 0.1511 0.7974 0.1821 0.2815 0.4202 0.2856 0.3448
2.4151 122000 9.5334 9.5738 0.1802 0.4385 0.5357 0.1537 0.5149 0.3361 0.2151 0.1503 0.7975 0.1836 0.3001 0.4133 0.2822 0.3463
2.4349 123000 9.5202 9.5696 0.1697 0.4451 0.5411 0.1493 0.5216 0.3337 0.2116 0.1488 0.7965 0.1804 0.2903 0.4231 0.2908 0.3463
2.4547 124000 9.5296 9.5683 0.1711 0.4556 0.5306 0.1466 0.5181 0.3235 0.2141 0.1570 0.7965 0.1785 0.2984 0.4201 0.2929 0.3464
2.4745 125000 9.5399 9.5660 0.1791 0.4487 0.5275 0.1417 0.5264 0.3305 0.2209 0.1596 0.7977 0.1770 0.3013 0.4271 0.2833 0.3478
2.4943 126000 9.5583 9.5641 0.1708 0.4400 0.5341 0.1489 0.5198 0.3291 0.2107 0.1515 0.8003 0.1784 0.3049 0.4282 0.2871 0.3465
2.5141 127000 9.5252 9.5618 0.1756 0.4424 0.5408 0.1577 0.5209 0.3244 0.2130 0.1526 0.8015 0.1785 0.3094 0.4217 0.2849 0.3480
2.5339 128000 9.5122 9.5577 0.1748 0.4405 0.5383 0.1501 0.5188 0.3305 0.2102 0.1446 0.8041 0.1804 0.3074 0.4184 0.2943 0.3471
2.5537 129000 9.5237 9.5523 0.1754 0.4396 0.5369 0.1509 0.5269 0.3246 0.2117 0.1458 0.8026 0.1799 0.2997 0.4153 0.2947 0.3465
2.5735 130000 9.5257 9.5510 0.1705 0.4365 0.5369 0.1560 0.5302 0.3310 0.2087 0.1559 0.8015 0.1832 0.3070 0.4243 0.2955 0.3490
2.5933 131000 9.5407 9.5489 0.1704 0.4386 0.5350 0.1495 0.5323 0.3302 0.2123 0.1565 0.8012 0.1846 0.3027 0.4278 0.2997 0.3493
2.6131 132000 9.5339 9.5449 0.1693 0.4445 0.5416 0.1621 0.5170 0.3186 0.2105 0.1551 0.8018 0.1799 0.2952 0.4263 0.2969 0.3476
2.6329 133000 9.5095 9.5399 0.1697 0.4392 0.5416 0.1545 0.5140 0.3332 0.2090 0.1557 0.7995 0.1758 0.2920 0.4202 0.3030 0.3467
2.6527 134000 9.5319 9.5397 0.1743 0.4370 0.5427 0.1635 0.5250 0.3231 0.2076 0.1504 0.8012 0.1767 0.2909 0.4205 0.2920 0.3465
2.6725 135000 9.5018 9.5376 0.1698 0.4358 0.5316 0.1600 0.5249 0.3199 0.2058 0.1496 0.8012 0.1859 0.2939 0.4150 0.2945 0.3452
2.6923 136000 9.4906 9.5338 0.1762 0.4350 0.5308 0.1525 0.5226 0.3315 0.2108 0.1667 0.7995 0.1809 0.2830 0.4364 0.2952 0.3478
2.7121 137000 9.4951 9.5307 0.1745 0.4356 0.5385 0.1482 0.5183 0.3339 0.2103 0.1658 0.7995 0.1786 0.2899 0.4205 0.2943 0.3468
2.7319 138000 9.498 9.5292 0.1710 0.4353 0.5363 0.1504 0.5278 0.3377 0.2045 0.1586 0.7981 0.1885 0.2882 0.4145 0.2996 0.3470
2.7517 139000 9.5133 9.5262 0.1705 0.4336 0.5352 0.1514 0.5250 0.3233 0.2091 0.1604 0.8016 0.1854 0.2837 0.4188 0.2966 0.3457
2.7715 140000 9.4934 9.5222 0.1740 0.4378 0.5279 0.1539 0.5199 0.3302 0.2128 0.1554 0.7989 0.1799 0.2885 0.4224 0.3013 0.3464
2.7913 141000 9.4993 9.5188 0.1754 0.4353 0.5209 0.1504 0.5287 0.3284 0.2128 0.1503 0.7972 0.1853 0.2851 0.4239 0.2956 0.3453
2.8110 142000 9.498 9.5188 0.1763 0.4313 0.5328 0.1514 0.5203 0.3260 0.2068 0.1603 0.8016 0.1812 0.3041 0.4303 0.2892 0.3470
2.8308 143000 9.477 9.5174 0.1749 0.4281 0.5437 0.1515 0.5096 0.3183 0.2025 0.1524 0.7963 0.1897 0.2938 0.4315 0.2872 0.3446
2.8506 144000 9.483 9.5132 0.1768 0.4279 0.5361 0.1424 0.5181 0.3307 0.2046 0.1506 0.7969 0.1834 0.2965 0.4301 0.2885 0.3448
2.8704 145000 9.478 9.5092 0.1870 0.4299 0.5334 0.1450 0.5128 0.3299 0.2035 0.1488 0.7981 0.1792 0.3008 0.4289 0.2886 0.3451
2.8902 146000 9.4904 9.5053 0.1759 0.4279 0.5370 0.1438 0.5218 0.3271 0.2077 0.1537 0.7995 0.1847 0.2832 0.4269 0.2891 0.3445
2.9100 147000 9.4787 9.5035 0.1744 0.4281 0.5437 0.1597 0.5050 0.3377 0.2044 0.1499 0.8003 0.1898 0.2915 0.4273 0.2928 0.3465
2.9298 148000 9.4861 9.5041 0.1801 0.4294 0.5303 0.1586 0.5067 0.3178 0.2086 0.1492 0.8030 0.1803 0.2837 0.4160 0.2972 0.3431
2.9496 149000 9.4736 9.5001 0.1758 0.4249 0.5350 0.1515 0.5103 0.3258 0.2128 0.1463 0.7983 0.1785 0.2847 0.4281 0.2936 0.3435
2.9694 150000 9.4847 9.4980 0.1742 0.4305 0.5362 0.1524 0.5215 0.3250 0.2097 0.1485 0.8016 0.1768 0.2911 0.4228 0.2946 0.3450
2.9892 151000 9.4756 9.4948 0.1694 0.4270 0.5333 0.1575 0.5128 0.3191 0.2116 0.1445 0.8015 0.1736 0.2908 0.4215 0.2889 0.3424
3.0090 152000 9.4206 9.4949 0.1751 0.4243 0.5332 0.1432 0.5094 0.3172 0.2100 0.1442 0.7981 0.1763 0.2852 0.4310 0.2880 0.3412
3.0288 153000 9.3728 9.4973 0.1746 0.4330 0.5332 0.1447 0.5212 0.3211 0.2142 0.1493 0.7968 0.1803 0.2964 0.4287 0.2886 0.3448
3.0486 154000 9.3962 9.5003 0.1815 0.4325 0.5341 0.1456 0.5162 0.3300 0.2175 0.1431 0.7971 0.1806 0.3010 0.4328 0.2892 0.3462
3.0684 155000 9.3975 9.4988 0.1784 0.4276 0.5391 0.1478 0.5187 0.3271 0.2212 0.1457 0.7987 0.1832 0.3011 0.4305 0.2866 0.3466
3.0882 156000 9.411 9.4975 0.1728 0.4266 0.5301 0.1505 0.5208 0.3275 0.2191 0.1461 0.7994 0.1829 0.3012 0.4289 0.2916 0.3460
3.1080 157000 9.3958 9.4955 0.1796 0.4283 0.5375 0.1498 0.5186 0.3409 0.2209 0.1503 0.7985 0.1816 0.3024 0.4372 0.2875 0.3487
3.1278 158000 9.4203 9.4925 0.1699 0.4338 0.5324 0.1454 0.5078 0.3324 0.2152 0.1480 0.7990 0.1780 0.2957 0.4364 0.2849 0.3445
3.1476 159000 9.416 9.4913 0.1751 0.4325 0.5301 0.1498 0.5152 0.3270 0.2179 0.1491 0.7964 0.1782 0.3020 0.4285 0.2878 0.3454
3.1674 160000 9.4133 9.4867 0.1757 0.4320 0.5334 0.1528 0.5177 0.3264 0.2153 0.1443 0.7896 0.1784 0.2946 0.4276 0.2933 0.3447
3.1872 161000 9.4188 9.4860 0.1780 0.4300 0.5357 0.1486 0.5096 0.3295 0.2221 0.1479 0.7915 0.1780 0.2941 0.4224 0.2920 0.3446
3.2070 162000 9.4297 9.4831 0.1826 0.4291 0.5338 0.1520 0.5032 0.3359 0.2204 0.1488 0.7951 0.1759 0.2946 0.4272 0.2887 0.3452
3.2268 163000 9.4151 9.4808 0.1779 0.4341 0.5256 0.1517 0.5141 0.3407 0.2200 0.1460 0.7973 0.1854 0.2971 0.4191 0.2903 0.3461
3.2466 164000 9.4185 9.4781 0.1748 0.4358 0.5368 0.1409 0.5137 0.3376 0.2139 0.1414 0.7974 0.1759 0.3024 0.4214 0.2890 0.3447
3.2664 165000 9.4227 9.4763 0.1771 0.4319 0.5236 0.1389 0.5143 0.3389 0.2091 0.1515 0.7960 0.1800 0.2955 0.4286 0.2896 0.3442
3.2862 166000 9.4049 9.4711 0.1804 0.4312 0.5264 0.1449 0.5098 0.3393 0.2083 0.1505 0.7963 0.1811 0.2918 0.4278 0.2897 0.3444
3.3059 167000 9.4249 9.4675 0.1788 0.4297 0.5298 0.1395 0.5121 0.3463 0.2096 0.1455 0.7975 0.1810 0.3020 0.4351 0.2882 0.3458
3.3257 168000 9.4047 9.4667 0.1660 0.4296 0.5296 0.1427 0.5152 0.3488 0.2093 0.1458 0.7975 0.1830 0.3008 0.4352 0.2869 0.3454
3.3455 169000 9.4124 9.4663 0.1661 0.4260 0.5325 0.1439 0.5171 0.3550 0.2122 0.1444 0.7975 0.1833 0.2994 0.4352 0.2891 0.3463
3.3653 170000 9.416 9.4636 0.1729 0.4248 0.5424 0.1578 0.5146 0.3521 0.2078 0.1463 0.7975 0.1783 0.3047 0.4292 0.2883 0.3474
3.3851 171000 9.4139 9.4593 0.1732 0.4275 0.5390 0.1517 0.5233 0.3433 0.2079 0.1477 0.7975 0.1750 0.3052 0.4285 0.2865 0.3466
3.4049 172000 9.3927 9.4585 0.1771 0.4279 0.5339 0.1522 0.5226 0.3456 0.2095 0.1468 0.7981 0.1791 0.3029 0.4300 0.2851 0.3470
3.4247 173000 9.4008 9.4560 0.1753 0.4289 0.5344 0.1606 0.5179 0.3410 0.2068 0.1467 0.7975 0.1796 0.2984 0.4294 0.2869 0.3464
3.4445 174000 9.403 9.4545 0.1730 0.4337 0.5372 0.1535 0.5230 0.3296 0.2030 0.1470 0.8010 0.1802 0.3080 0.4243 0.2879 0.3463
3.4643 175000 9.414 9.4498 0.1678 0.4330 0.5383 0.1588 0.5134 0.3348 0.2050 0.1472 0.7984 0.1794 0.2980 0.4165 0.2876 0.3445
3.4841 176000 9.4006 9.4484 0.1726 0.4367 0.5311 0.1571 0.5167 0.3191 0.2092 0.1517 0.7975 0.1840 0.2968 0.4212 0.2904 0.3449
3.5039 177000 9.4065 9.4452 0.1722 0.4347 0.5311 0.1524 0.5210 0.3324 0.2061 0.1525 0.7964 0.1810 0.3090 0.4310 0.2895 0.3469
3.5237 178000 9.4145 9.4411 0.1763 0.4360 0.5279 0.1571 0.5112 0.3257 0.2094 0.1505 0.7969 0.1768 0.2963 0.4288 0.2883 0.3447
3.5435 179000 9.4052 9.4404 0.1757 0.4367 0.5292 0.1549 0.5200 0.3348 0.2107 0.1527 0.7961 0.1808 0.2873 0.4250 0.2871 0.3455
3.5633 180000 9.412 9.4392 0.1723 0.4337 0.5354 0.1531 0.5181 0.3348 0.2092 0.1480 0.7967 0.1786 0.2877 0.4227 0.2907 0.3447
3.5831 181000 9.4105 9.4377 0.1747 0.4308 0.5334 0.1572 0.5188 0.3348 0.2101 0.1480 0.7967 0.1753 0.2894 0.4294 0.2895 0.3452
3.6029 182000 9.3904 9.4336 0.1703 0.4358 0.5354 0.1524 0.5229 0.3283 0.2227 0.1488 0.7999 0.1768 0.2954 0.4290 0.2889 0.3467
3.6227 183000 9.3784 9.4310 0.1743 0.4311 0.5379 0.1437 0.5182 0.3264 0.2198 0.1490 0.7999 0.1758 0.3012 0.4294 0.2889 0.3458
3.6425 184000 9.3762 9.4288 0.1713 0.4345 0.5362 0.1506 0.5136 0.3186 0.2107 0.1491 0.7973 0.1751 0.3018 0.4282 0.2898 0.3444
3.6623 185000 9.3958 9.4268 0.1757 0.4290 0.5420 0.1503 0.5158 0.3175 0.2067 0.1465 0.7938 0.1772 0.3020 0.4219 0.2921 0.3439
3.6821 186000 9.4056 9.4261 0.1790 0.4308 0.5388 0.1454 0.5162 0.3200 0.2096 0.1400 0.7949 0.1699 0.2988 0.4235 0.2867 0.3426
3.7019 187000 9.3616 9.4244 0.1797 0.4279 0.5428 0.1499 0.5173 0.3252 0.2150 0.1405 0.7975 0.1758 0.2900 0.4287 0.2862 0.3443
3.7217 188000 9.3864 9.4239 0.1794 0.4288 0.5447 0.1474 0.5225 0.3273 0.2210 0.1467 0.7975 0.1710 0.2966 0.4361 0.2804 0.3461
3.7415 189000 9.3842 9.4199 0.1765 0.4295 0.5306 0.1450 0.5176 0.3190 0.2218 0.1461 0.7961 0.1753 0.2959 0.4284 0.2843 0.3436
3.7613 190000 9.3888 9.4186 0.1770 0.4281 0.5369 0.1451 0.5140 0.3171 0.2173 0.1408 0.7953 0.1774 0.2887 0.4271 0.2833 0.3422
3.7811 191000 9.3769 9.4163 0.1777 0.4291 0.5417 0.1411 0.5150 0.3176 0.2103 0.1474 0.7959 0.1813 0.3013 0.4268 0.2757 0.3431
3.8009 192000 9.3643 9.4151 0.1773 0.4275 0.5396 0.1483 0.5170 0.3236 0.2100 0.1482 0.7959 0.1796 0.2993 0.4274 0.2766 0.3439
3.8206 193000 9.376 9.4128 0.1707 0.4300 0.5431 0.1422 0.5139 0.3277 0.2144 0.1472 0.7959 0.1823 0.2945 0.4283 0.2821 0.3440
3.8404 194000 9.396 9.4102 0.1727 0.4280 0.5418 0.1486 0.5137 0.3242 0.2071 0.1470 0.7959 0.1800 0.3001 0.4280 0.2843 0.3440
3.8602 195000 9.3662 9.4087 0.1741 0.4273 0.5371 0.1451 0.5116 0.3185 0.2101 0.1455 0.7959 0.1810 0.2940 0.4278 0.2840 0.3424
3.8800 196000 9.3727 9.4067 0.1704 0.4271 0.5393 0.1411 0.5099 0.3165 0.2047 0.1508 0.7967 0.1848 0.2946 0.4281 0.2838 0.3421
3.8998 197000 9.3805 9.4048 0.1716 0.4254 0.5416 0.1477 0.5192 0.3154 0.2098 0.1468 0.7953 0.1827 0.2920 0.4280 0.2874 0.3433
3.9196 198000 9.3799 9.4033 0.1687 0.4278 0.5393 0.1472 0.5146 0.3219 0.2083 0.1479 0.7961 0.1838 0.2918 0.4275 0.2860 0.3432
3.9394 199000 9.3702 9.3999 0.1681 0.4306 0.5401 0.1476 0.5098 0.3233 0.2112 0.1470 0.7975 0.1816 0.2926 0.4278 0.2814 0.3430
3.9592 200000 9.3646 9.3988 0.1701 0.4321 0.5401 0.1484 0.5107 0.3227 0.2135 0.1465 0.7980 0.1815 0.2930 0.4335 0.2858 0.3443
3.9790 201000 9.3559 9.3963 0.1696 0.4319 0.5418 0.1475 0.5135 0.3218 0.2117 0.1484 0.7975 0.1821 0.2856 0.4270 0.2853 0.3434
3.9988 202000 9.3566 9.3950 0.1743 0.4284 0.5432 0.1398 0.5092 0.3236 0.2113 0.1481 0.7980 0.1822 0.2784 0.4330 0.2827 0.3425
4.0186 203000 9.2801 9.3988 0.1709 0.4305 0.5418 0.1357 0.5223 0.3149 0.2129 0.1513 0.7975 0.1804 0.2873 0.4349 0.2820 0.3433
4.0384 204000 9.3024 9.3985 0.1745 0.4305 0.5418 0.1451 0.5189 0.3159 0.2081 0.1501 0.7975 0.1795 0.2869 0.4284 0.2828 0.3431
4.0582 205000 9.2953 9.3992 0.1743 0.4278 0.5418 0.1327 0.5162 0.3145 0.2110 0.1498 0.7975 0.1843 0.2818 0.4289 0.2825 0.3418
4.0780 206000 9.2922 9.4003 0.1731 0.4283 0.5416 0.1391 0.5180 0.3166 0.2110 0.1498 0.7972 0.1801 0.2796 0.4289 0.2830 0.3420
4.0978 207000 9.2851 9.3996 0.1740 0.4294 0.5416 0.1410 0.5147 0.3155 0.2134 0.1560 0.7975 0.1822 0.2880 0.4303 0.2820 0.3435
4.1176 208000 9.2913 9.3978 0.1740 0.4325 0.5416 0.1350 0.5131 0.3156 0.2129 0.1554 0.7975 0.1800 0.2876 0.4303 0.2856 0.3432
4.1374 209000 9.298 9.3966 0.1732 0.4274 0.5430 0.1387 0.5219 0.3139 0.2145 0.1507 0.7975 0.1779 0.2870 0.4275 0.2852 0.3430
4.1572 210000 9.2952 9.3943 0.1761 0.4262 0.5430 0.1433 0.5226 0.3231 0.2128 0.1561 0.7980 0.1806 0.2871 0.4282 0.2865 0.3449
4.1770 211000 9.3193 9.3924 0.1741 0.4269 0.5430 0.1331 0.5218 0.3256 0.2140 0.1503 0.7980 0.1786 0.2869 0.4284 0.2843 0.3435
4.1968 212000 9.297 9.3912 0.1744 0.4278 0.5428 0.1427 0.5217 0.3267 0.2138 0.1488 0.7980 0.1794 0.2806 0.4278 0.2831 0.3437
4.2166 213000 9.2984 9.3891 0.1797 0.4297 0.5430 0.1428 0.5236 0.3251 0.2128 0.1495 0.7980 0.1762 0.2791 0.4272 0.2859 0.3440
4.2364 214000 9.306 9.3881 0.1818 0.4275 0.5436 0.1457 0.5215 0.3244 0.2120 0.1498 0.7980 0.1812 0.2801 0.4278 0.2835 0.3444
4.2562 215000 9.3029 9.3861 0.1807 0.4290 0.5436 0.1413 0.5206 0.3244 0.2166 0.1481 0.7980 0.1829 0.2860 0.4275 0.2847 0.3449
4.2760 216000 9.2965 9.3848 0.1769 0.4280 0.5430 0.1471 0.5209 0.3251 0.2128 0.1555 0.7975 0.1794 0.2739 0.4270 0.2827 0.3438
4.2958 217000 9.3171 9.3828 0.1796 0.4285 0.5430 0.1438 0.5209 0.3231 0.2133 0.1490 0.7975 0.1819 0.2858 0.4270 0.2793 0.3440
4.3155 218000 9.3181 9.3824 0.1794 0.4262 0.5430 0.1496 0.5241 0.3243 0.2147 0.1481 0.7975 0.1794 0.2812 0.4275 0.2818 0.3444
4.3353 219000 9.2952 9.3794 0.1766 0.4265 0.5432 0.1412 0.5223 0.3243 0.2098 0.1475 0.7975 0.1777 0.2851 0.4328 0.2784 0.3433
4.3551 220000 9.32 9.3776 0.1739 0.4261 0.5432 0.1362 0.5258 0.3257 0.2106 0.1470 0.7980 0.1782 0.2815 0.4268 0.2787 0.3424
4.3749 221000 9.2999 9.3758 0.1767 0.4297 0.5432 0.1395 0.5175 0.3252 0.2126 0.1489 0.7980 0.1778 0.2865 0.4210 0.2801 0.3428
4.3947 222000 9.2954 9.3750 0.1783 0.4261 0.5432 0.1397 0.5220 0.3244 0.2116 0.1496 0.7980 0.1797 0.2929 0.4268 0.2786 0.3439
4.4145 223000 9.2944 9.3726 0.1795 0.4275 0.5432 0.1395 0.5172 0.3236 0.2130 0.1488 0.7971 0.1785 0.2921 0.4273 0.2796 0.3436
4.4343 224000 9.2851 9.3714 0.1794 0.4251 0.5432 0.1395 0.5172 0.3227 0.2136 0.1488 0.7975 0.1780 0.2921 0.4268 0.2788 0.3433
4.4541 225000 9.2856 9.3694 0.1761 0.4257 0.5432 0.1408 0.5218 0.3227 0.2116 0.1486 0.7971 0.1800 0.2935 0.4270 0.2794 0.3437
4.4739 226000 9.2967 9.3676 0.1792 0.4256 0.5418 0.1372 0.5200 0.3230 0.2100 0.1492 0.7967 0.1774 0.2939 0.4270 0.2803 0.3432
4.4937 227000 9.3019 9.3670 0.1798 0.4253 0.5430 0.1397 0.5200 0.3147 0.2063 0.1481 0.7967 0.1779 0.2946 0.4210 0.2792 0.3420
4.5135 228000 9.2938 9.3655 0.1795 0.4258 0.5423 0.1397 0.5192 0.3139 0.2094 0.1487 0.7967 0.1775 0.2943 0.4210 0.2780 0.3420
4.5333 229000 9.306 9.3643 0.1772 0.4251 0.5432 0.1393 0.5235 0.3148 0.2079 0.1487 0.7998 0.1798 0.2917 0.4216 0.2768 0.3423
4.5531 230000 9.3057 9.3631 0.1726 0.4250 0.5423 0.1393 0.5241 0.3148 0.2080 0.1483 0.7967 0.1795 0.2923 0.4216 0.2771 0.3417
4.5729 231000 9.3069 9.3615 0.1757 0.4240 0.5421 0.1500 0.5226 0.3171 0.2093 0.1481 0.7980 0.1783 0.2920 0.4216 0.2784 0.3429
4.5927 232000 9.3003 9.3604 0.1752 0.4255 0.5421 0.1498 0.5226 0.3185 0.2096 0.1478 0.7980 0.1801 0.2920 0.4216 0.2783 0.3432
4.6125 233000 9.3042 9.3594 0.1748 0.4243 0.5407 0.1453 0.5263 0.3185 0.2098 0.1472 0.7972 0.1796 0.2918 0.4216 0.2797 0.3428
4.6323 234000 9.3079 9.3573 0.1749 0.4256 0.5407 0.1428 0.5242 0.3185 0.2096 0.1536 0.7975 0.1793 0.2920 0.4273 0.2815 0.3437
4.6521 235000 9.284 9.3566 0.1729 0.4256 0.5407 0.1455 0.5253 0.3190 0.2079 0.1487 0.7975 0.1801 0.2936 0.4273 0.2812 0.3435
4.6719 236000 9.2916 9.3550 0.1755 0.4270 0.5416 0.1447 0.5216 0.3190 0.2081 0.1487 0.7975 0.1797 0.2869 0.4273 0.2823 0.3431
4.6917 237000 9.2871 9.3537 0.1733 0.4263 0.5421 0.1447 0.5246 0.3190 0.2097 0.1492 0.7980 0.1779 0.2917 0.4273 0.2786 0.3433
4.7115 238000 9.3105 9.3519 0.1729 0.4248 0.5430 0.1372 0.5194 0.3176 0.2096 0.1492 0.7980 0.1803 0.2917 0.4273 0.2799 0.3424
4.7313 239000 9.2935 9.3506 0.1731 0.4241 0.5421 0.1447 0.5194 0.3176 0.2078 0.1483 0.7975 0.1780 0.2903 0.4273 0.2797 0.3423
4.7511 240000 9.283 9.3497 0.1730 0.4257 0.5421 0.1388 0.5149 0.3176 0.2079 0.1486 0.7975 0.1779 0.2906 0.4273 0.2809 0.3417
4.7709 241000 9.2994 9.3486 0.1733 0.4257 0.5421 0.1388 0.5194 0.3176 0.2093 0.1486 0.7959 0.1798 0.2903 0.4216 0.2785 0.3416
4.7907 242000 9.2784 9.3475 0.1734 0.4245 0.5421 0.1433 0.5149 0.3176 0.2078 0.1486 0.7966 0.1780 0.2899 0.4200 0.2797 0.3413
4.8105 243000 9.2968 9.3466 0.1751 0.4245 0.5421 0.1388 0.5149 0.3176 0.2083 0.1486 0.7980 0.1779 0.2906 0.4273 0.2768 0.3416
4.8302 244000 9.2829 9.3455 0.1751 0.4245 0.5421 0.1446 0.5149 0.3176 0.2096 0.1486 0.7959 0.1778 0.2899 0.4273 0.2782 0.3420
4.8500 245000 9.2787 9.3449 0.1739 0.4245 0.5421 0.1446 0.5149 0.3176 0.2085 0.1486 0.7961 0.1779 0.2899 0.4273 0.2794 0.3420
4.8698 246000 9.2856 9.3439 0.1735 0.4247 0.5421 0.1491 0.5149 0.3176 0.2081 0.1483 0.7961 0.1779 0.2899 0.4216 0.2806 0.3419
4.8896 247000 9.2754 9.3433 0.1735 0.4247 0.5421 0.1490 0.5149 0.3176 0.2083 0.1483 0.7966 0.1779 0.2897 0.4216 0.2810 0.3419
4.9094 248000 9.2706 9.3427 0.1735 0.4247 0.5421 0.1491 0.5140 0.3176 0.2066 0.1487 0.7959 0.1774 0.2899 0.4216 0.2825 0.3418
4.9292 249000 9.3004 9.3422 0.1735 0.4247 0.5416 0.1491 0.5140 0.3176 0.2066 0.1487 0.7975 0.1774 0.2899 0.4216 0.2811 0.3418
4.9490 250000 9.2861 9.3417 0.1735 0.4247 0.5416 0.1491 0.5140 0.3176 0.2066 0.1487 0.7961 0.1774 0.2899 0.4216 0.2811 0.3417
4.9688 251000 9.2583 9.3412 0.1735 0.4247 0.5416 0.1491 0.5140 0.3176 0.2066 0.1487 0.7966 0.1755 0.2899 0.4216 0.2813 0.3416
4.9886 252000 9.2786 9.3411 0.1735 0.4247 0.5416 0.1491 0.5140 0.3176 0.2066 0.1483 0.7966 0.1755 0.2899 0.4216 0.2813 0.3416

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}