Qwen2.5-0.5B finetuned for proficiency in Portuguese language and increased intelligence.

https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v1
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações."

# System prompt is always injected and hardcoded automatically
# for ideal performance in portuguese language.
# No need to write it again.
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response
# LLM significa Large Language Models, que são modelos de linguagem computacional
# projetados para simular a inteligência humana no processamento e geração de texto.
# Esses modelos usam técnicas avançadas de aprendizado de máquina e redes neurais para
# compreender e gerar texto com base em dados de entrada. As aplicações de LLM incluem
# tradução automática, análise de sentimento, modelagem de tópicos e resposta a perguntas
# automatizadas. Eles estão sendo cada vez mais utilizados em diversas áreas, como
# saúde, educação e finanças, para melhorar a comunicação, as experiências dos clientes
# e os resultados da pesquisa.

Overall Results

Task Metric Value Stdev
assin2_rte f1_macro 0.391 0.006
assin2_rte acc 0.527 0.007
assin2_sts pearson 0.115 0.014
assin2_sts mse 1.011 N/A
bluex acc 0.349 0.010
enem_challenge acc 0.363 0.007
faquad_nli f1_macro 0.595 0.017
faquad_nli acc 0.791 0.011
hatebr_offensive f1_macro 0.338 0.005
hatebr_offensive acc 0.502 0.009
oab_exams acc 0.326 0.006
portuguese_hate_speech f1_macro 0.412 0.004
portuguese_hate_speech acc 0.702 0.011
tweetsentbr f1_macro 0.455 0.005
tweetsentbr acc 0.594 0.008

Detailed Results

assin2_rte

Metric Value Stdev
f1_macro 0.391 0.006
acc 0.527 0.007

assin2_sts

Metric Value Stdev
pearson 0.115 0.014
mse 1.011 N/A

bluex

Exam ID Metric Value Stdev
all acc 0.349 0.010
USP_2019 acc 0.225 0.038
USP_2024 acc 0.293 0.041
USP_2021 acc 0.423 0.040
UNICAMP_2018 acc 0.241 0.034
UNICAMP_2024 acc 0.444 0.043
USP_2020 acc 0.393 0.038
UNICAMP_2020 acc 0.291 0.035
UNICAMP_2021_1 acc 0.326 0.040
UNICAMP_2022 acc 0.487 0.046
USP_2022 acc 0.388 0.040
UNICAMP_2019 acc 0.280 0.037
UNICAMP_2021_2 acc 0.294 0.037
UNICAMP_2023 acc 0.558 0.044
USP_2023 acc 0.364 0.042
USP_2018 acc 0.278 0.035

enem_challenge

Exam ID Metric Value Stdev
all acc 0.363 0.007
2016_2 acc 0.390 0.025
2015 acc 0.319 0.025
2011 acc 0.410 0.026
2013 acc 0.398 0.027
2017 acc 0.319 0.025
2022 acc 0.376 0.024
2009 acc 0.226 0.023
2010 acc 0.444 0.026
2012 acc 0.345 0.025
2014 acc 0.339 0.026
2016 acc 0.397 0.026
2023 acc 0.385 0.024

faquad_nli

Metric Value Stdev
f1_macro 0.595 0.017
acc 0.791 0.011

hatebr_offensive

Metric Value Stdev
f1_macro 0.338 0.005
acc 0.502 0.009

oab_exams

Exam ID Metric Value Stdev
all acc 0.326 0.006
2018-25 acc 0.400 0.032
2016-20a acc 0.238 0.027
2011-05 acc 0.400 0.032
2012-08 acc 0.325 0.030
2012-09 acc 0.260 0.029
2014-13 acc 0.325 0.030
2011-03 acc 0.313 0.027
2016-20 acc 0.275 0.029
2012-06a acc 0.325 0.030
2017-22 acc 0.338 0.031
2015-16 acc 0.325 0.030
2013-12 acc 0.300 0.030
2017-24 acc 0.250 0.028
2012-06 acc 0.238 0.027
2014-14 acc 0.325 0.030
2013-11 acc 0.325 0.030
2013-10 acc 0.413 0.032
2010-02 acc 0.390 0.028
2016-21 acc 0.375 0.031
2015-18 acc 0.300 0.030
2015-17 acc 0.282 0.029
2016-19 acc 0.333 0.031
2012-07 acc 0.388 0.031
2017-23 acc 0.325 0.030
2011-04 acc 0.350 0.031
2010-01 acc 0.282 0.028
2014-15 acc 0.385 0.032

portuguese_hate_speech

Metric Value Stdev
f1_macro 0.412 0.004
acc 0.702 0.011

tweetsentbr

Metric Value Stdev
f1_macro 0.455 0.005
acc 0.594 0.008

Model Meta Information

  • Truncated Samples: 3863
  • Non-Truncated Samples: 10287
  • Padded Samples: 0
  • Non-Padded Samples: 14150
  • Fewshots Truncated: 3863
  • Has Chat Template: True
  • Chat Type: system_user_assistant
  • Number of GPUs: 1
  • Accelerate Number of Processes: N/A
  • Model SHA: None
  • Model Data Type: torch.bfloat16
  • Model Memory Footprint: 988065664 bytes
  • Model Number of Parameters: 494032768
  • Model is Loaded in 4bit: N/A
  • Model is Loaded in 8bit: N/A
  • Model is Quantized: N/A
  • Model Device: cuda:0
  • Batch Size: 1
  • Max Length: 512
  • Max Context Length 480
  • Max Generation Tokens: 32
  • Effective Batch Size: 1.0
Downloads last month
756
Safetensors
Model size
494M params
Tensor type
BF16
·
Inference Providers NEW
Input a message to start chatting with cnmoro/Qwen2.5-0.5B-Portuguese-v1.

Model tree for cnmoro/Qwen2.5-0.5B-Portuguese-v1

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(234)
this model
Quantizations
1 model