metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:196
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The text refers to the preparation of a pre-trained model for data set
usage, which is a crucial step in machine learning projects. This suggests
that the project involves using a model that has already been trained on a
dataset, which can then be fine-tuned or used directly for specific tasks,
potentially saving time and computational resources.
sentences:
- >-
What is the significance of preparing a pre-trained model in the data
set for the process described in the text?
- What is the purpose of the document?
- >-
What are the developer AI developer's experiences in AI development and
research?
- source_sentence: >-
The project manager has a degree from Vietnam National University and has
completed a Google TensorFlow certification.
sentences:
- >-
How often are the training, evaluation, and re-training steps repeated
in the text?
- What is the project manager's educational background?
- >-
What information should be shared via email when final product delivery
is completed?
- source_sentence: >-
The text mentions that Docker for the deployment of a high NT Q trained
model was built between July 18 and July 19, 2024.
sentences:
- What is the role of "データベースベクトルとセマンティクス検索モジュール"?
- >-
When was the Docker for the deployment of a high NT Q trained model
built?
- >-
What is the significance of Level 3 in the escalation process described
in the text?
- source_sentence: >-
The text spans from September 4th to October 16th, covering a total of 33
days.
sentences:
- How many days are listed in the given text?
- >-
How does the system support the current system and plan for future
feature development?
- What are the two distinct products offered by NT Q?
- source_sentence: >-
After text generation, the process involves providing test data to NT Q,
which then undergoes article correction, including dealing with fragmented
articles and errors.
sentences:
- >-
What is the process for providing test data to NT Q after text
generation?
- When is the deadline for combining the API for the setting function?
- What is the significance of the dates in the text?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7755102040816326
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8775510204081632
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9591836734693877
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9795918367346939
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7755102040816326
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2925170068027211
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19183673469387752
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09795918367346937
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7755102040816326
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8775510204081632
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9591836734693877
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9795918367346939
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8776251324776435
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8447845804988664
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.846354439211582
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7959183673469388
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8979591836734694
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9591836734693877
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9795918367346939
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7959183673469388
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29931972789115646
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19183673469387752
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09795918367346937
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7959183673469388
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8979591836734694
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9591836734693877
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9795918367346939
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.884559158446073
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8539358600583091
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8551363402503859
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6938775510204082
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9183673469387755
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9591836734693877
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9591836734693877
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6938775510204082
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3061224489795918
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19183673469387752
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09591836734693876
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6938775510204082
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9183673469387755
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9591836734693877
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9591836734693877
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8397332987260313
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7993197278911565
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8016520894071916
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6938775510204082
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9183673469387755
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9183673469387755
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9183673469387755
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6938775510204082
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3061224489795918
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1836734693877551
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09183673469387756
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6938775510204082
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9183673469387755
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9183673469387755
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9183673469387755
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8168105921282822
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7823129251700681
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7865583396195641
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5918367346938775
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7959183673469388
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8163265306122449
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9183673469387755
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5918367346938775
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26530612244897955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16326530612244897
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09183673469387756
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5918367346938775
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7959183673469388
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8163265306122449
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9183673469387755
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7471061057082727
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6929057337220603
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6978234213668709
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cngcv/bge-base-financial-matryoshka")
sentences = [
'After text generation, the process involves providing test data to NT Q, which then undergoes article correction, including dealing with fragmented articles and errors.',
'What is the process for providing test data to NT Q after text generation?',
'What is the significance of the dates in the text?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7755 |
cosine_accuracy@3 |
0.8776 |
cosine_accuracy@5 |
0.9592 |
cosine_accuracy@10 |
0.9796 |
cosine_precision@1 |
0.7755 |
cosine_precision@3 |
0.2925 |
cosine_precision@5 |
0.1918 |
cosine_precision@10 |
0.098 |
cosine_recall@1 |
0.7755 |
cosine_recall@3 |
0.8776 |
cosine_recall@5 |
0.9592 |
cosine_recall@10 |
0.9796 |
cosine_ndcg@10 |
0.8776 |
cosine_mrr@10 |
0.8448 |
cosine_map@100 |
0.8464 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7959 |
cosine_accuracy@3 |
0.898 |
cosine_accuracy@5 |
0.9592 |
cosine_accuracy@10 |
0.9796 |
cosine_precision@1 |
0.7959 |
cosine_precision@3 |
0.2993 |
cosine_precision@5 |
0.1918 |
cosine_precision@10 |
0.098 |
cosine_recall@1 |
0.7959 |
cosine_recall@3 |
0.898 |
cosine_recall@5 |
0.9592 |
cosine_recall@10 |
0.9796 |
cosine_ndcg@10 |
0.8846 |
cosine_mrr@10 |
0.8539 |
cosine_map@100 |
0.8551 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6939 |
cosine_accuracy@3 |
0.9184 |
cosine_accuracy@5 |
0.9592 |
cosine_accuracy@10 |
0.9592 |
cosine_precision@1 |
0.6939 |
cosine_precision@3 |
0.3061 |
cosine_precision@5 |
0.1918 |
cosine_precision@10 |
0.0959 |
cosine_recall@1 |
0.6939 |
cosine_recall@3 |
0.9184 |
cosine_recall@5 |
0.9592 |
cosine_recall@10 |
0.9592 |
cosine_ndcg@10 |
0.8397 |
cosine_mrr@10 |
0.7993 |
cosine_map@100 |
0.8017 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6939 |
cosine_accuracy@3 |
0.9184 |
cosine_accuracy@5 |
0.9184 |
cosine_accuracy@10 |
0.9184 |
cosine_precision@1 |
0.6939 |
cosine_precision@3 |
0.3061 |
cosine_precision@5 |
0.1837 |
cosine_precision@10 |
0.0918 |
cosine_recall@1 |
0.6939 |
cosine_recall@3 |
0.9184 |
cosine_recall@5 |
0.9184 |
cosine_recall@10 |
0.9184 |
cosine_ndcg@10 |
0.8168 |
cosine_mrr@10 |
0.7823 |
cosine_map@100 |
0.7866 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5918 |
cosine_accuracy@3 |
0.7959 |
cosine_accuracy@5 |
0.8163 |
cosine_accuracy@10 |
0.9184 |
cosine_precision@1 |
0.5918 |
cosine_precision@3 |
0.2653 |
cosine_precision@5 |
0.1633 |
cosine_precision@10 |
0.0918 |
cosine_recall@1 |
0.5918 |
cosine_recall@3 |
0.7959 |
cosine_recall@5 |
0.8163 |
cosine_recall@10 |
0.9184 |
cosine_ndcg@10 |
0.7471 |
cosine_mrr@10 |
0.6929 |
cosine_map@100 |
0.6978 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 196 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 15 tokens
- mean: 46.58 tokens
- max: 118 tokens
|
- min: 10 tokens
- mean: 17.25 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
The document lists several tasks with their statuses, such as "Done", "In progress", and "To be done". These statuses indicate the current progress of each task within the project. For example, "Set up environment" and "Set up development environment" are marked as "Done", suggesting these tasks have been completed, while "Build translation data set" is marked as "In progress", indicating it is currently being worked on. |
What is the status of the project tasks mentioned in the document? |
The 'Web Application Construction' task is mentioned to be completed by NT Q, with a duration from July 17, 2023, to July 28, 2023, and is marked as 'Done' with a completion of 10 tasks. |
What is the scope of the 'Web Application Construction' task? |
"RE F" could potentially stand for "Reference File" or "Record File," indicating that this text might be part of a larger dataset or document used for reference or record-keeping purposes. |
What is the significance of the "RE F" at the beginning of the text? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
1.0 |
1 |
0.6908 |
0.7097 |
0.8111 |
0.6240 |
0.8011 |
2.0 |
2 |
0.7292 |
0.7692 |
0.8177 |
0.6634 |
0.8162 |
3.0 |
3 |
0.7555 |
0.8014 |
0.8541 |
0.6992 |
0.8451 |
4.0 |
4 |
0.7866 |
0.8017 |
0.8551 |
0.6978 |
0.8464 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}