metadata
license: cc-by-nc-4.0
model-index:
- name: mixtral_7bx4_moe
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.27
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.28
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.84
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.85
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.66
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.09
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
Now this model is improved by DPO to cloudyu/Pluto_24B_DPO_200
Mixtral MOE 4x7B
MOE the following models by mergekit:
- Q-bert/MetaMath-Cybertron-Starling
- mistralai/Mistral-7B-Instruct-v0.2
- teknium/Mistral-Trismegistus-7B
- meta-math/MetaMath-Mistral-7B
- openchat/openchat-3.5-1210
Metrics
- Average : 68.85
- ARC:65.36
- HellaSwag:85.23
- more details: https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/cloudyu/Mixtral_7Bx4_MOE_24B/results_2023-12-23T18-05-51.243288.json
gpu code example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
CPU example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.83 |
AI2 Reasoning Challenge (25-Shot) | 65.27 |
HellaSwag (10-Shot) | 85.28 |
MMLU (5-Shot) | 62.84 |
TruthfulQA (0-shot) | 59.85 |
Winogrande (5-shot) | 77.66 |
GSM8k (5-shot) | 62.09 |