|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# Mixtral MOE 4x7B |
|
|
|
|
|
|
|
MOE the following models by mergekit: |
|
* [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co./Q-bert/MetaMath-Cybertron-Starling) |
|
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) |
|
* [teknium/Mistral-Trismegistus-7B](https://huggingface.co./teknium/Mistral-Trismegistus-7B) |
|
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B) |
|
* [openchat/openchat-3.5-1210](https://huggingface.co./openchat/openchat-3.5-1210) |
|
|
|
|
|
Metrics |
|
* Average : 68.85 |
|
* ARC:65.36 |
|
* HellaSwag:85.23 |
|
* more details: https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/cloudyu/Mixtral_7Bx4_MOE_24B/results_2023-12-23T18-05-51.243288.json |
|
|
|
gpu code example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
``` |
|
|
|
CPU example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
|
|
``` |